These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23994308)

  • 1. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens.
    Zhang X; Ye X; Guo B; Finneran KT; Zilles JL; Morgenroth E
    Bioresour Technol; 2013 Nov; 147():89-95. PubMed ID: 23994308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose.
    Zhang X; Ye X; Finneran KT; Zilles JL; Morgenroth E
    Biotechnol Bioeng; 2013 Jan; 110(1):164-72. PubMed ID: 22886601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii.
    Ye X; Morgenroth E; Zhang X; Finneran KT
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):855-64. PubMed ID: 21947605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol.
    Zhang Y; Ezeji TC
    J Ind Microbiol Biotechnol; 2014 Oct; 41(10):1505-16. PubMed ID: 25085743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of reduced electron shuttling compounds on biological H2 production in the fermentative pure culture Clostridium beijerinckii.
    Hatch JL; Finneran KT
    Curr Microbiol; 2008 Mar; 56(3):268-73. PubMed ID: 18167025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Cupriavidus basilensis-aided bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by Clostridium beijerinckii.
    Agu CV; Ujor V; Gopalan V; Ezeji TC
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1215-26. PubMed ID: 27400988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of banana crop residue as an agricultural bioresource for the production of acetone-butanol-ethanol by Clostridium beijerinckii YVU1.
    Reddy LV; Veda AS; Wee YJ
    Lett Appl Microbiol; 2020 Jan; 70(1):36-41. PubMed ID: 31631376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis.
    Xin B; Wang Y; Tao F; Li L; Ma C; Xu P
    Sci Rep; 2016 Jan; 6():19044. PubMed ID: 26750307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation.
    Ezeji T; Qureshi N; Blaschek HP
    Biotechnol Bioeng; 2007 Aug; 97(6):1460-9. PubMed ID: 17274071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization.
    Fu H; Yang ST; Wang M; Wang J; Tang IC
    Bioresour Technol; 2017 Jun; 234():389-396. PubMed ID: 28343058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mono- and co-substrate utilization kinetics using mono- and co-culture of Clostridium beijerinckii and Clostridium saccharoperbutylacetonicum.
    Nasr N; Gupta M; Hafez H; El Naggar MH; Nakhla G
    Bioresour Technol; 2017 Oct; 241():152-160. PubMed ID: 28554101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment of lignocellulosic biomass using Fenton chemistry.
    Kato DM; Elía N; Flythe M; Lynn BC
    Bioresour Technol; 2014 Jun; 162():273-8. PubMed ID: 24759643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates.
    Bellido C; Loureiro Pinto M; Coca M; González-Benito G; García-Cubero MT
    Bioresour Technol; 2014 Sep; 167():198-205. PubMed ID: 24983690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric iron and extracellular electron shuttling increase xylose utilization and butanol production during fermentation with multiple solventogenic bacteria.
    Popovic J; Ye X; Haluska A; Finneran KT
    Appl Microbiol Biotechnol; 2017 Nov; 101(21):8053-8061. PubMed ID: 28963627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor.
    Li J; Du Y; Bao T; Dong J; Lin M; Shim H; Yang ST
    Bioresour Technol; 2019 Oct; 289():121749. PubMed ID: 31323711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.
    Ujor V; Agu CV; Gopalan V; Ezeji TC
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3729-40. PubMed ID: 25690312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii.
    Rosa D; Medeiros ABP; Martinez-Burgos WJ; do Nascimento JR; de Carvalho JC; Sydney EB; Soccol CR
    J Biotechnol; 2020 Nov; 323():17-23. PubMed ID: 32569792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.