These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 23994320)
1. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH. Martínez-Soto D; Ruiz-Herrera J Fungal Genet Biol; 2013; 58-59():116-25. PubMed ID: 23994320 [TBL] [Abstract][Full Text] [Related]
2. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism. Robledo-Briones M; Ruiz-Herrera J FEMS Yeast Res; 2013 Feb; 13(1):74-84. PubMed ID: 23167842 [TBL] [Abstract][Full Text] [Related]
4. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis. Rodríguez-Kessler M; Baeza-Montañez L; García-Pedrajas MD; Tapia-Moreno A; Gold S; Jiménez-Bremont JF; Ruiz-Herrera J Microbiol Res; 2012 May; 167(5):270-82. PubMed ID: 22154329 [TBL] [Abstract][Full Text] [Related]
5. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. Cervantes-Montelongo JA; Ruiz-Herrera J J Basic Microbiol; 2019 Jan; 59(1):14-23. PubMed ID: 30357888 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes. Martínez-Salgado JL; León-Ramírez CG; Pacheco AB; Ruiz-Herrera J; de la Rosa AP J Proteomics; 2013 Feb; 79():251-62. PubMed ID: 23305952 [TBL] [Abstract][Full Text] [Related]
7. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Martínez-Espinoza AD; Ruiz-Herrera J; León-Ramírez CG; Gold SE Curr Microbiol; 2004 Oct; 49(4):274-81. PubMed ID: 15386116 [TBL] [Abstract][Full Text] [Related]
8. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Boyce KJ; Chang H; D'Souza CA; Kronstad JW Eukaryot Cell; 2005 Dec; 4(12):2044-56. PubMed ID: 16339722 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis. Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Smith DG; Garcia-Pedrajas MD; Gold SE; Perlin MH Mol Microbiol; 2003 Oct; 50(1):259-75. PubMed ID: 14507379 [TBL] [Abstract][Full Text] [Related]
11. The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. Bastos KP; Bailão AM; Borges CL; Faria FP; Felipe MS; Silva MG; Martins WS; Fiúza RB; Pereira M; Soares CM BMC Microbiol; 2007 Apr; 7():29. PubMed ID: 17425801 [TBL] [Abstract][Full Text] [Related]
12. The signaling mechanisms involved in the dimorphic phenomenon of the Basidiomycota fungus Ustilago maydis. Ruiz-Herrera J; Pérez-Rodríguez F; Velez-Haro J Int Microbiol; 2020 Jan; 23(1):121-126. PubMed ID: 31915950 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Böhmer M; Colby T; Böhmer C; Bräutigam A; Schmidt J; Bölker M Proteomics; 2007 Mar; 7(5):675-85. PubMed ID: 17340586 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Kijpornyongpan T; Aime MC Fungal Genet Biol; 2021 Jul; 152():103565. PubMed ID: 33991665 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis. Martínez-Soto D; González-Prieto JM; Ruiz-Herrera J FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126523 [TBL] [Abstract][Full Text] [Related]
16. The posttranscriptional machinery of Ustilago maydis. Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465 [TBL] [Abstract][Full Text] [Related]
17. Specificity of DNA methylation changes during fungal dimorphism and its relationship to polyamines. Reyna-López GE; Ruiz-Herrera J Curr Microbiol; 2004 Feb; 48(2):118-23. PubMed ID: 15057479 [TBL] [Abstract][Full Text] [Related]
18. Genetics of morphogenesis and pathogenic development of Ustilago maydis. Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE Adv Genet; 2007; 57():1-47. PubMed ID: 17352901 [TBL] [Abstract][Full Text] [Related]
19. Identification of dimorphism-involved genes of Yarrowia lipolytica by means of microarray analysis. Morales-Vargas AT; Domínguez A; Ruiz-Herrera J Res Microbiol; 2012 Jun; 163(5):378-87. PubMed ID: 22595080 [TBL] [Abstract][Full Text] [Related]
20. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]