BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23994321)

  • 21. Transformation of Penicillium chrysogenum with selection for increased resistance to benomyl.
    Picknett TM; Saunders G
    FEMS Microbiol Lett; 1989 Jul; 51(1):165-8. PubMed ID: 2506108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted gene deletion in Aspergillus fumigatus using microbial machinery and a recyclable marker.
    Kieler JB; Duong KL; Moye-Rowley WS; Klutts JS
    J Microbiol Methods; 2013 Dec; 95(3):373-8. PubMed ID: 24161898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of the Penicillium chrysogenum genome on industrial production of metabolites.
    van den Berg MA
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):45-53. PubMed ID: 21805169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitaminea.
    Sun L; Yan M; Ding Z; Liu Y; Du M; Xi P; Liao J; Ji L; Jiang Z
    Biotechnol Lett; 2014 Jun; 36(6):1309-14. PubMed ID: 24563317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of Penicillium chrysogenum with a dominant selectable marker.
    Bull JH; Smith DJ; Turner G
    Curr Genet; 1988 May; 13(5):377-82. PubMed ID: 3135949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum.
    Fierro F; García-Estrada C; Castillo NI; Rodríguez R; Velasco-Conde T; Martín JF
    Fungal Genet Biol; 2006 Sep; 43(9):618-29. PubMed ID: 16713314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici.
    Sidhu YS; Cairns TC; Chaudhari YK; Usher J; Talbot NJ; Studholme DJ; Csukai M; Haynes K
    Fungal Genet Biol; 2015 Jun; 79():102-9. PubMed ID: 26092796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient Agrobacterium-mediated system based on the pyrG auxotrophic marker for recombinant expression in the filamentous fungus Penicillium rubens.
    Tran VT; Thai HD; Vu TX; Vu HH; Nguyen GT; Trinh MT; Tran HTT; Pham HTT; Le NTH
    Biotechnol Lett; 2023 Jun; 45(5-6):689-702. PubMed ID: 37071381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An efficient gene disruption method using a positive-negative split-selection marker and Agrobacterium tumefaciens-mediated transformation for Nomuraea rileyi.
    Su Y; Wang Z; Shao C; Luo Y; Wang L; Yin Y
    World J Microbiol Biotechnol; 2018 Jan; 34(2):26. PubMed ID: 29340841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola.
    Flowers JL; Vaillancourt LJ
    Curr Genet; 2005 Dec; 48(6):380-8. PubMed ID: 16292539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in thermophilic fungus Thermomyces lanuginosus.
    Han H; Xu X; Peng Y; Kong D; Li D
    Wei Sheng Wu Xue Bao; 2012 Dec; 52(12):1449-57. PubMed ID: 23457794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of the trpC gene from Penicillium chrysogenum in Aspergillus nidulans.
    Picknett TM; Saunders G; Holt G
    Biotechnol Appl Biochem; 1989 Oct; 11(5):464-70. PubMed ID: 2508698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agrobacterium tumefaciens-mediated transformation of the dermatophyte, Trichophyton mentagrophytes: an efficient tool for gene transfer.
    Yamada T; Makimura K; Satoh K; Umeda Y; Ishihara Y; Abe S
    Med Mycol; 2009; 47(5):485-94. PubMed ID: 18951290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system.
    Hu S; Fu J; Huang F; Ding X; Stewart AF; Xia L; Zhang Y
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2165-72. PubMed ID: 24297480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts.
    Abbott EP; Ianiri G; Castoria R; Idnurm A
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):283-95. PubMed ID: 23149757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255.
    van den Berg MA; Westerlaken I; Leeflang C; Kerkman R; Bovenberg RA
    Fungal Genet Biol; 2007 Sep; 44(9):830-44. PubMed ID: 17548217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction.
    Casqueiro J; Gutiérrez S; Bañuelos O; Hijarrubia MJ; Martín JF
    J Bacteriol; 1999 Feb; 181(4):1181-8. PubMed ID: 9973344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.
    Michielse CB; Arentshorst M; Ram AF; van den Hondel CA
    Fungal Genet Biol; 2005 Jan; 42(1):9-19. PubMed ID: 15588992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola.
    Zwiers LH; De Waard MA
    Curr Genet; 2001 Jul; 39(5-6):388-93. PubMed ID: 11525415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos.
    Gurel S; Gurel E; Miller TI; Lemaux PG
    Methods Mol Biol; 2012; 847():109-22. PubMed ID: 22351003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.