BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23994431)

  • 1. The ever-growing peptide knowledge promotes the improvement of HLA class I peptide-binding prediction.
    Wang S; Wu Y
    Immunol Lett; 2013; 154(1-2):49-53. PubMed ID: 23994431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class II HLA-peptide binding prediction using structural principles.
    Mohanapriya A; Lulu S; Kayathri R; Kangueane P
    Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of supertype-specific HLA class I binding peptides using support vector machines.
    Zhang GL; Bozic I; Kwoh CK; August JT; Brusic V
    J Immunol Methods; 2007 Mar; 320(1-2):143-54. PubMed ID: 17303158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research.
    Lin HH; Zhang GL; Tongchusak S; Reinherz EL; Brusic V
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S22. PubMed ID: 19091022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides.
    Zhang GL; Khan AM; Srinivasan KN; August JT; Brusic V
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W172-9. PubMed ID: 15980449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets.
    Altuvia Y; Sette A; Sidney J; Southwood S; Margalit H
    Hum Immunol; 1997 Nov; 58(1):1-11. PubMed ID: 9438204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides.
    Tong JC; Zhang GL; Tan TW; August JT; Brusic V; Ranganathan S
    Bioinformatics; 2006 May; 22(10):1232-8. PubMed ID: 16510499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules.
    Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S
    J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
    Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H
    Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme.
    Bi J; Song R; Yang H; Li B; Fan J; Liu Z; Long C
    Biopolymers; 2011; 96(3):328-39. PubMed ID: 21072852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules.
    Gomez-Nunez M; Pinilla-Ibarz J; Dao T; May RJ; Pao M; Jaggi JS; Scheinberg DA
    Leuk Res; 2006 Oct; 30(10):1293-8. PubMed ID: 16533527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of a primary human cytotoxic T-lymphocyte response against a novel conserved epitope in a functional sequence of HIV-1 reverse transcriptase.
    van der Burg SH; Klein MR; van de Velde CJ; Kast WM; Miedema F; Melief CJ
    AIDS; 1995 Feb; 9(2):121-7. PubMed ID: 7536421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.
    Moghram BA; Nabil E; Badr A
    Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting class I major histocompatibility complex (MHC) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression.
    Doytchinova IA; Flower DR
    J Chem Inf Model; 2007; 47(1):234-8. PubMed ID: 17238269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.