These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23994471)

  • 1. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II.
    Viktorovskaya OV; Engel KL; French SL; Cui P; Vandeventer PJ; Pavlovic EM; Beyer AL; Kaplan CD; Schneider DA
    Cell Rep; 2013 Sep; 4(5):974-84. PubMed ID: 23994471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Assay for RNA Polymerase I Transcription Elongation Sheds Light on the Evolutionary Divergence of Eukaryotic RNA Polymerases.
    Scull CE; Ingram ZM; Lucius AL; Schneider DA
    Biochemistry; 2019 Apr; 58(16):2116-2124. PubMed ID: 30912638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of eukaryotic RNA polymerases I, II, and III.
    Archambault J; Friesen JD
    Microbiol Rev; 1993 Sep; 57(3):703-24. PubMed ID: 8246845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo.
    Kaplan CD; Jin H; Zhang IL; Belyanin A
    PLoS Genet; 2012; 8(4):e1002627. PubMed ID: 22511879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
    Hamada M; Huang Y; Lowe TM; Maraia RJ
    Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III.
    Briand JF; Navarro F; Rematier P; Boschiero C; Labarre S; Werner M; Shpakovski GV; Thuriaux P
    Mol Cell Biol; 2001 Sep; 21(17):6056-65. PubMed ID: 11486042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
    Kireeva ML; Nedialkov YA; Cremona GH; Purtov YA; Lubkowska L; Malagon F; Burton ZF; Strathern JN; Kashlev M
    Mol Cell; 2008 Jun; 30(5):557-66. PubMed ID: 18538654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
    Merkl PE; Pilsl M; Fremter T; Schwank K; Engel C; Längst G; Milkereit P; Griesenbeck J; Tschochner H
    J Biol Chem; 2020 Apr; 295(15):4782-4795. PubMed ID: 32060094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of two modes of intrinsic RNA polymerase transcript cleavage.
    Ruan W; Lehmann E; Thomm M; Kostrewa D; Cramer P
    J Biol Chem; 2011 May; 286(21):18701-7. PubMed ID: 21454497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation between the RNA polymerase I, II, and III transcription initiation machineries.
    Vannini A; Cramer P
    Mol Cell; 2012 Feb; 45(4):439-46. PubMed ID: 22365827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II.
    Engel C; Neyer S; Cramer P
    Annu Rev Biophys; 2018 May; 47():425-446. PubMed ID: 29792819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae.
    Kubicek CE; Chisholm RD; Takayama S; Hawley DK
    G3 (Bethesda); 2013 Feb; 3(2):167-80. PubMed ID: 23390594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA pol II subunit RPB7 is required for RNA pol I-mediated transcription in Trypanosoma brucei.
    Peñate X; López-Farfán D; Landeira D; Wentland A; Vidal I; Navarro M
    EMBO Rep; 2009 Mar; 10(3):252-7. PubMed ID: 19165144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription.
    Hoffmann NA; Sadian Y; Tafur L; Kosinski J; Müller CW
    Transcription; 2016 Aug; 7(4):127-32. PubMed ID: 27327079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis.
    Čabart P; Jin H; Li L; Kaplan CD
    Transcription; 2014; 5(3):e28869. PubMed ID: 25764335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9.
    Kaster BC; Knippa KC; Kaplan CD; Peterson DO
    J Biol Chem; 2016 Jul; 291(28):14883-95. PubMed ID: 27226557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta.
    Pavlov YI; Shcherbakova PV; Kunkel TA
    Genetics; 2001 Sep; 159(1):47-64. PubMed ID: 11560886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread epistasis shapes RNA Polymerase II active site function and evolution.
    Duan B; Qiu C; Sze SH; Kaplan C
    bioRxiv; 2023 Apr; ():. PubMed ID: 36909581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation.
    He XJ; Hsu YF; Pontes O; Zhu J; Lu J; Bressan RA; Pikaard C; Wang CS; Zhu JK
    Genes Dev; 2009 Feb; 23(3):318-30. PubMed ID: 19204117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insight into RNA polymerase I promoter recognition and promoter melting.
    Sadian Y; Baudin F; Tafur L; Murciano B; Wetzel R; Weis F; Müller CW
    Nat Commun; 2019 Dec; 10(1):5543. PubMed ID: 31804486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.