These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23994532)
1. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.). Ugajin A; Kunieda T; Kubo T FEBS Lett; 2013 Oct; 587(19):3224-30. PubMed ID: 23994532 [TBL] [Abstract][Full Text] [Related]
2. Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects. Ugajin A; Watanabe T; Uchiyama H; Sasaki T; Yajima S; Ono M Biochem Biophys Res Commun; 2016 Sep; 478(2):1014-9. PubMed ID: 27392711 [TBL] [Abstract][Full Text] [Related]
3. Inducible- and constitutive-type transcript variants of kakusei , a novel non-coding immediate early gene, in the honeybee brain. Kiya T; Kunieda T; Kubo T Insect Mol Biol; 2008 Sep; 17(5):531-6. PubMed ID: 18691230 [TBL] [Abstract][Full Text] [Related]
4. Analysis of GABAergic and non-GABAergic neuron activity in the optic lobes of the forager and re-orienting worker honeybee (Apis mellifera L.). Kiya T; Kubo T PLoS One; 2010 Jan; 5(1):e8833. PubMed ID: 20098617 [TBL] [Abstract][Full Text] [Related]
5. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight. Lutz CC; Robinson GE J Exp Biol; 2013 Jun; 216(Pt 11):2031-8. PubMed ID: 23678099 [TBL] [Abstract][Full Text] [Related]
6. Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera. Takeuchi H; Yasuda A; Yasuda-Kamatani Y; Sawata M; Matsuo Y; Kato A; Tsujimoto A; Nakajima T; Kubo T Cell Tissue Res; 2004 May; 316(2):281-93. PubMed ID: 14999560 [TBL] [Abstract][Full Text] [Related]
7. Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis. Kaneko K; Ikeda T; Nagai M; Hori S; Umatani C; Tadano H; Ugajin A; Nakaoka T; Paul RK; Fujiyuki T; Shirai K; Kunieda T; Takeuchi H; Kubo T PLoS One; 2013; 8(8):e71732. PubMed ID: 23990981 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of HR38 in the mushroom bodies of the honeybee brain depends on the caste and division of labor. Yamazaki Y; Shirai K; Paul RK; Fujiyuki T; Wakamoto A; Takeuchi H; Kubo T FEBS Lett; 2006 May; 580(11):2667-70. PubMed ID: 16647071 [TBL] [Abstract][Full Text] [Related]
9. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball". Ugajin A; Kiya T; Kunieda T; Ono M; Yoshida T; Kubo T PLoS One; 2012; 7(3):e32902. PubMed ID: 22431987 [TBL] [Abstract][Full Text] [Related]
10. Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L. Kamikouchi A; Takeuchi H; Sawata M; Ohashi K; Natori S; Kubo T Biochem Biophys Res Commun; 1998 Jan; 242(1):181-6. PubMed ID: 9439632 [TBL] [Abstract][Full Text] [Related]
11. Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study. Kiya T; Ugajin A; Kunieda T; Kubo T Int J Mol Sci; 2012 Nov; 13(12):15496-509. PubMed ID: 23443077 [TBL] [Abstract][Full Text] [Related]
12. Mushroom body-preferential expression of proteins/genes involved in endoplasmic reticulum Ca(2+)-transport in the worker honeybee (Apis mellifera L.) brain. Uno Y; Fujiyuki T; Morioka M; Kubo T Insect Mol Biol; 2013 Feb; 22(1):52-61. PubMed ID: 23170949 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.). Suenami S; Paul RK; Takeuchi H; Okude G; Fujiyuki T; Shirai K; Kubo T PLoS One; 2016; 11(6):e0157841. PubMed ID: 27351839 [TBL] [Abstract][Full Text] [Related]
14. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains. Kiya T; Kubo T PLoS One; 2011 Apr; 6(4):e19301. PubMed ID: 21541290 [TBL] [Abstract][Full Text] [Related]
15. Identification and initial characterization of novel neural immediate early genes possibly differentially contributing to foraging-related learning and memory processes in the honeybee. Ugajin A; Uchiyama H; Miyata T; Sasaki T; Yajima S; Ono M Insect Mol Biol; 2018 Apr; 27(2):154-165. PubMed ID: 29096051 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary conservation of the egr-1 immediate-early gene response in a teleost. Burmeister SS; Fernald RD J Comp Neurol; 2005 Jan; 481(2):220-32. PubMed ID: 15562507 [TBL] [Abstract][Full Text] [Related]
17. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Iino S; Shiota Y; Nishimura M; Asada S; Ono M; Kubo T Sci Rep; 2020 May; 10(1):7887. PubMed ID: 32398802 [TBL] [Abstract][Full Text] [Related]
18. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus. McNeill MS; Robinson GE Insect Mol Biol; 2015 Jun; 24(3):377-90. PubMed ID: 25773289 [TBL] [Abstract][Full Text] [Related]
19. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee. Wachten S; Schlenstedt J; Gauss R; Baumann A J Neurochem; 2006 Mar; 96(6):1580-90. PubMed ID: 16464235 [TBL] [Abstract][Full Text] [Related]
20. Immediate early gene kakusei potentially plays a role in the daily foraging of honey bees. Singh AS; Takhellambam MC; Cappelletti P; Feligioni M PLoS One; 2020; 15(5):e0222256. PubMed ID: 32374761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]