These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23994687)

  • 1. Chemical fragmentation for massively parallel sequencing library preparation.
    Gyarmati P; Song Y; Hällman J; Käller M
    J Biotechnol; 2013 Oct; 168(1):95-100. PubMed ID: 23994687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Library preparation methods for next-generation sequencing: tone down the bias.
    van Dijk EL; Jaszczyszyn Y; Thermes C
    Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI.
    Shinozuka H; Cogan NO; Shinozuka M; Marshall A; Kay P; Lin YH; Spangenberg GC; Forster JW
    BMC Biotechnol; 2015 Apr; 15():25. PubMed ID: 25887558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving high throughput sequencing of a cDNA library utilizing an alternative protocol for the bench top next-generation sequencing system.
    Wan M; Faruq J; Rosenberg JN; Xia J; Oyler GA; Betenbaugh MJ
    J Microbiol Methods; 2013 Feb; 92(2):122-6. PubMed ID: 23127394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA.
    Alquezar-Planas DE; Fordyce SL
    Methods Mol Biol; 2012; 888():109-18. PubMed ID: 22665278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection.
    Ranade SS; Chung CB; Zon G; Boyd VL
    Anal Biochem; 2009 Jul; 390(2):126-35. PubMed ID: 19379703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of next generation sequencing to molecular diagnosis of inherited diseases.
    Zhang W; Cui H; Wong LJ
    Top Curr Chem; 2014; 336():19-45. PubMed ID: 22576358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation.
    Moonsamy PV; Williams T; Bonella P; Holcomb CL; Höglund BN; Hillman G; Goodridge D; Turenchalk GS; Blake LA; Daigle DA; Simen BB; Hamilton A; May AP; Erlich HA
    Tissue Antigens; 2013 Mar; 81(3):141-9. PubMed ID: 23398507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of enzymatic fragmentation is crucial to maximize genome coverage: a comparison of library preparation methods for Illumina sequencing.
    Ribarska T; Bjørnstad PM; Sundaram AYM; Gilfillan GD
    BMC Genomics; 2022 Feb; 23(1):92. PubMed ID: 35105301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational methods for epigenetic analysis: the protocol of computational analysis for modified methylation-specific digital karyotyping based on massively parallel sequencing.
    Li J; Zhao Q; Bolund L
    Methods Mol Biol; 2011; 791():313-28. PubMed ID: 21913089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Best Practices for Illumina Library Preparation.
    Bronner IF; Quail MA
    Curr Protoc Hum Genet; 2019 Jun; 102(1):e86. PubMed ID: 31216112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of next-generation sequencing libraries from damaged DNA.
    Briggs AW; Heyn P
    Methods Mol Biol; 2012; 840():143-54. PubMed ID: 22237532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massively parallel sequencing of forensically relevant single nucleotide polymorphisms using TruSeq™ forensic amplicon.
    Warshauer DH; Davis CP; Holt C; Han Y; Walichiewicz P; Richardson T; Stephens K; Jager A; King J; Budowle B
    Int J Legal Med; 2015 Jan; 129(1):31-6. PubMed ID: 25408291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and cost-saving in tagmentation-based mate-pair library preparation and sequencing.
    Tatsumi K; Nishimura O; Itomi K; Tanegashima C; Kuraku S
    Biotechniques; 2015 May; 58(5):253-7. PubMed ID: 25967904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of fragment libraries for next-generation sequencing on the applied biosystems SOLiD platform.
    Yegnasubramanian S
    Methods Enzymol; 2013; 529():185-200. PubMed ID: 24011046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenomics: sequencing the methylome.
    Hirst M
    Methods Mol Biol; 2013; 973():39-54. PubMed ID: 23412782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of normalized cDNA libraries for 454 Titanium transcriptome sequencing.
    Lai Z; Zou Y; Kane NC; Choi JH; Wang X; Rieseberg LH
    Methods Mol Biol; 2012; 888():119-33. PubMed ID: 22665279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction to next-generation nucleic acid sequencing in cardiovascular disease research.
    Diaw L; Youngblood V; Taylor JG
    Methods Mol Biol; 2013; 1027():157-79. PubMed ID: 23912986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exome versus transcriptome sequencing in identifying coding region variants.
    Ku CS; Wu M; Cooper DN; Naidoo N; Pawitan Y; Pang B; Iacopetta B; Soong R
    Expert Rev Mol Diagn; 2012 Apr; 12(3):241-51. PubMed ID: 22468815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing.
    Linsen SE; Cuppen E
    Methods Mol Biol; 2012; 822():205-17. PubMed ID: 22144201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.