BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23994697)

  • 1. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2.
    Chen CY; Chen YC; Huang HC; Huang CC; Lee WL; Chang JS
    Bioresour Technol; 2013 Nov; 147():160-167. PubMed ID: 23994697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements.
    Chen CY; Chen YC; Huang HC; Ho SH; Chang JS
    Bioresour Technol; 2015 Sep; 191():407-13. PubMed ID: 25777066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors.
    Chen CY; Nagarajan D; Cheah WY
    Bioresour Technol; 2018 Apr; 253():1-7. PubMed ID: 29328929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nannochloropsis oceanica, a novel natural source of rumen-protected eicosapentaenoic acid (EPA) for ruminants.
    Alves SP; Mendonça SH; Silva JL; Bessa RJB
    Sci Rep; 2018 Jul; 8(1):10269. PubMed ID: 29980726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.
    Meng Y; Jiang J; Wang H; Cao X; Xue S; Yang Q; Wang W
    Bioresour Technol; 2015 Mar; 179():483-489. PubMed ID: 25575208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utilization of natural soda resource of Ordos in the cultivation of Nannochloropsis oceanica.
    Pan Y; Yang H; Meng Y; Liu J; Shen P; Wu P; Cao X; Xue S
    Bioresour Technol; 2016 Jan; 200():548-56. PubMed ID: 26528905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production.
    Poliner E; Pulman JA; Zienkiewicz K; Childs K; Benning C; Farré EM
    Plant Biotechnol J; 2018 Jan; 16(1):298-309. PubMed ID: 28605577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-promoting bacteria double eicosapentaenoic acid yield in microalgae.
    Liu B; Eltanahy EE; Liu H; Chua ET; Thomas-Hall SR; Wass TJ; Pan K; Schenk PM
    Bioresour Technol; 2020 Nov; 316():123916. PubMed ID: 32768998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations.
    Koh HG; Jeon S; Kim M; Chang YK; Park K; Park SH; Kang NK
    Plant Physiol Biochem; 2024 Jun; 211():108729. PubMed ID: 38754177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga
    Xu Y
    J Agric Food Chem; 2022 Sep; 70(37):11500-11509. PubMed ID: 36083864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-dried Nannochloropsis oceanica biomass protects eicosapentaenoic acid (EPA) from metabolization in the rumen of lambs.
    Vítor ACM; Francisco AE; Silva J; Pinho M; Huws SA; Santos-Silva J; Bessa RJB; Alves SP
    Sci Rep; 2021 Nov; 11(1):21878. PubMed ID: 34750444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.
    Safafar H; Hass MZ; Møller P; Holdt SL; Jacobsen C
    Mar Drugs; 2016 Jul; 14(8):. PubMed ID: 27483291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of eicosapentaenoic acid by Nannochloropsis oculata: Effects of carbon dioxide and glycerol.
    Shene C; Chisti Y; Vergara D; Burgos-Díaz C; Rubilar M; Bustamante M
    J Biotechnol; 2016 Dec; 239():47-56. PubMed ID: 27725210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and fatty acid composition of Nannochloropsis sp. grown mixotrophically in fed-batch culture.
    Xu F; Cai ZL; Cong W; Ouyang F
    Biotechnol Lett; 2004 Sep; 26(17):1319-22. PubMed ID: 15604757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of nitrogen sources on growth density, lipid yield and eicosapentaenoic acid of Nannochloropsis oculata].
    Lu X; Zhang Q; Lu M; Dou X; Huang C; Jia J; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1865-9. PubMed ID: 24660635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3.
    Tsai HP; Chuang LT; Chen CN
    Food Chem; 2016 Feb; 192():682-90. PubMed ID: 26304398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct enzymatic ethanolysis of potential
    He Y; Wang X; Wei H; Zhang J; Chen B; Chen F
    Biotechnol Biofuels; 2019; 12():78. PubMed ID: 30992715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus.
    Hu H; Li JY; Pan XR; Zhang F; Ma LL; Wang HJ; Zeng RJ
    Sci Total Environ; 2019 Mar; 656():140-149. PubMed ID: 30504016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.