BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 23994754)

  • 1. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA.
    Tonin Y; Heckel AM; Dovydenko I; Meschaninova M; Comte C; Venyaminova A; Pyshnyi D; Tarassov I; Entelis N
    Biochimie; 2014 May; 100():192-9. PubMed ID: 23994754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.
    Loutre R; Heckel AM; Jeandard D; Tarassov I; Entelis N
    PLoS One; 2018; 13(6):e0199258. PubMed ID: 29912984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA.
    Tonin Y; Heckel AM; Vysokikh M; Dovydenko I; Meschaninova M; Rötig A; Munnich A; Venyaminova A; Tarassov I; Entelis N
    J Biol Chem; 2014 May; 289(19):13323-34. PubMed ID: 24692550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsolved issues related to human mitochondrial diseases.
    Lombès A; Auré K; Bellanné-Chantelot C; Gilleron M; Jardel C
    Biochimie; 2014 May; 100():171-6. PubMed ID: 23973280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome.
    Comte C; Tonin Y; Heckel-Mager AM; Boucheham A; Smirnov A; Auré K; Lombès A; Martin RP; Entelis N; Tarassov I
    Nucleic Acids Res; 2013 Jan; 41(1):418-33. PubMed ID: 23087375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mitochondrial DNA diseases and therapeutic strategies].
    Tonin Y; Entelis N
    Med Sci (Paris); 2014 Dec; 30(12):1101-9. PubMed ID: 25537040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Mitochondrial DNA be CRISPRized: Pro and Contra.
    Loutre R; Heckel AM; Smirnova A; Entelis N; Tarassov I
    IUBMB Life; 2018 Dec; 70(12):1233-1239. PubMed ID: 30184317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease.
    Bayona-Bafaluy MP; Blits B; Battersby BJ; Shoubridge EA; Moraes CT
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14392-7. PubMed ID: 16179392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Heteroplasmy.
    Stefano GB; Bjenning C; Wang F; Wang N; Kream RM
    Adv Exp Med Biol; 2017; 982():577-594. PubMed ID: 28551808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations.
    Moraes CT; Atencio DP; Oca-Cossio J; Diaz F
    J Mol Diagn; 2003 Nov; 5(4):197-208. PubMed ID: 14573777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model.
    Bacman SR; Williams SL; Hernandez D; Moraes CT
    Gene Ther; 2007 Sep; 14(18):1309-18. PubMed ID: 17597792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases.
    Hashimoto M; Bacman SR; Peralta S; Falk MJ; Chomyn A; Chan DC; Williams SL; Moraes CT
    Mol Ther; 2015 Oct; 23(10):1592-9. PubMed ID: 26159306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse models of mtDNA replication diseases.
    Tyynismaa H; Suomalainen A
    Methods; 2010 Aug; 51(4):405-10. PubMed ID: 20385238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of mitochondria-targeted endonucleases to manipulate mtDNA.
    Bacman SR; Williams SL; Pinto M; Moraes CT
    Methods Enzymol; 2014; 547():373-97. PubMed ID: 25416366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells.
    Kolesnikova OA; Entelis NS; Jacquin-Becker C; Goltzene F; Chrzanowska-Lightowlers ZM; Lightowlers RN; Martin RP; Tarassov I
    Hum Mol Genet; 2004 Oct; 13(20):2519-34. PubMed ID: 15317755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic rescue in pluripotent cells from patients with mtDNA disease.
    Ma H; Folmes CD; Wu J; Morey R; Mora-Castilla S; Ocampo A; Ma L; Poulton J; Wang X; Ahmed R; Kang E; Lee Y; Hayama T; Li Y; Van Dyken C; Gutierrez NM; Tippner-Hedges R; Koski A; Mitalipov N; Amato P; Wolf DP; Huang T; Terzic A; Laurent LC; Izpisua Belmonte JC; Mitalipov S
    Nature; 2015 Aug; 524(7564):234-8. PubMed ID: 26176921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction theory of mammalian mitochondria.
    Nakada K; Inoue K; Hayashi J
    Biochem Biophys Res Commun; 2001 Nov; 288(4):743-6. PubMed ID: 11688969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches.
    Nissanka N; Moraes CT
    EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional mitochondrial heterogeneity in heteroplasmic cells carrying the mitochondrial DNA mutation associated with the MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and strokelike episodes).
    Bakker A; Barthélémy C; Frachon P; Chateau D; Sternberg D; Mazat JP; Lombès A
    Pediatr Res; 2000 Aug; 48(2):143-50. PubMed ID: 10926287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy.
    Pereira CV; Moraes CT
    Front Biosci (Landmark Ed); 2017 Jan; 22(6):991-1010. PubMed ID: 27814659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.