BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23995460)

  • 1. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?
    Zhang F; Broughton RE
    Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves.
    Piccinini G; Iannello M; Puccio G; Plazzi F; Havird JC; Ghiselli F
    Mol Biol Evol; 2021 May; 38(6):2597-2614. PubMed ID: 33616640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes.
    Havird JC; Sloan DB
    Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions.
    Baris TZ; Wagner DN; Dayan DI; Du X; Blier PU; Pichaud N; Oleksiak MF; Crawford DL
    PLoS Genet; 2017 Mar; 13(3):e1006517. PubMed ID: 28362806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution.
    Adrion JR; White PS; Montooth KL
    Mol Biol Evol; 2016 Jan; 33(1):152-61. PubMed ID: 26416980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera.
    Li Y; Zhang R; Liu S; Donath A; Peters RS; Ware J; Misof B; Niehuis O; Pfrender ME; Zhou X
    BMC Evol Biol; 2017 Dec; 17(1):269. PubMed ID: 29281964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.
    Weng ML; Ruhlman TA; Jansen RK
    Genome Biol Evol; 2016 Jun; 8(6):1824-38. PubMed ID: 27190001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes.
    van der Sluis EO; Bauerschmitt H; Becker T; Mielke T; Frauenfeld J; Berninghausen O; Neupert W; Herrmann JM; Beckmann R
    Genome Biol Evol; 2015 Apr; 7(5):1235-51. PubMed ID: 25861818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of nuclearly encoded mitochondrial genes in Metazoa.
    De Grassi A; Caggese C; D'Elia D; Lanave C; Pesole G; Saccone C
    Gene; 2005 Jul; 354():181-8. PubMed ID: 15975737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects.
    Yan Z; Ye G; Werren JH
    Mol Biol Evol; 2019 May; 36(5):1022-1036. PubMed ID: 30785203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i.
    Gershoni M; Fuchs A; Shani N; Fridman Y; Corral-Debrinski M; Aharoni A; Frishman D; Mishmar D
    J Mol Biol; 2010 Nov; 404(1):158-71. PubMed ID: 20868692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution.
    Havird JC; Whitehill NS; Snow CD; Sloan DB
    Evolution; 2015 Dec; 69(12):3069-81. PubMed ID: 26514987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting patterns of selective constraints in nuclear-encoded genes of the oxidative phosphorylation pathway in holometabolous insects and their possible role in hybrid breakdown in Nasonia.
    Gibson JD; Niehuis O; Verrelli BC; Gadau J
    Heredity (Edinb); 2010 Mar; 104(3):310-7. PubMed ID: 20087391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes.
    Nabholz B; Ellegren H; Wolf JB
    Mol Biol Evol; 2013 Feb; 30(2):272-84. PubMed ID: 23071102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stronger selective constraint on downstream genes in the oxidative phosphorylation pathway of cetaceans.
    Tian R; Xu S; Chai S; Yin D; Zakon H; Yang G
    J Evol Biol; 2018 Feb; 31(2):217-228. PubMed ID: 29172233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes.
    Ceriotti LF; Gatica-Soria L; Sanchez-Puerta MV
    Plant Mol Biol; 2022 Aug; 109(6):673-688. PubMed ID: 35359176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sexually Antagonistic Mitonuclear Coevolution in Duplicate Oxidative Phosphorylation Genes.
    Havird JC; McConie HJ
    Integr Comp Biol; 2019 Oct; 59(4):864-874. PubMed ID: 30942855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Signatures of Mitonuclear Coevolution in Mammals.
    Weaver RJ; Rabinowitz S; Thueson K; Havird JC
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitogroup: continent-specific clusters of mitochondrial OXPHOS complexes based on nuclear non-synonymous polymorphisms.
    Pierron D; Letellier T; Grossman LI
    Mitochondrion; 2012 Mar; 12(2):237-41. PubMed ID: 21968253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metazoan OXPHOS gene families: evolutionary forces at the level of mitochondrial and nuclear genomes.
    Saccone C; Lanave C; De Grassi A
    Biochim Biophys Acta; 2006; 1757(9-10):1171-8. PubMed ID: 16781661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.