These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23995836)

  • 1. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms.
    Rauh D; Fischer F; Gertz M; Lakshminarasimhan M; Bergbrede T; Aladini F; Kambach C; Becker CF; Zerweck J; Schutkowski M; Steegborn C
    Nat Commun; 2013; 4():2327. PubMed ID: 23995836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based modulator discovery for sirtuin-catalyzed deacetylation reaction.
    Zheng W
    Mini Rev Med Chem; 2013 Jan; 13(1):132-54. PubMed ID: 22876953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins.
    Knyphausen P; de Boor S; Kuhlmann N; Scislowski L; Extra A; Baldus L; Schacherl M; Baumann U; Neundorf I; Lammers M
    J Biol Chem; 2016 Jul; 291(28):14677-94. PubMed ID: 27226597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis of sirtuin substrate affinity.
    Cosgrove MS; Bever K; Avalos JL; Muhammad S; Zhang X; Wolberger C
    Biochemistry; 2006 Jun; 45(24):7511-21. PubMed ID: 16768447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in characterization of human sirtuin isoforms: chemistries, targets and therapeutic applications.
    Cen Y; Youn DY; Sauve AA
    Curr Med Chem; 2011; 18(13):1919-35. PubMed ID: 21517779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.
    Roessler C; Nowak T; Pannek M; Gertz M; Nguyen GT; Scharfe M; Born I; Sippl W; Steegborn C; Schutkowski M
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10728-32. PubMed ID: 25111069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay.
    Liu Y; Gerber R; Wu J; Tsuruda T; McCarter JD
    Anal Biochem; 2008 Jul; 378(1):53-9. PubMed ID: 18358225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.
    Toro TB; Watt TJ
    Protein Sci; 2015 Dec; 24(12):2020-32. PubMed ID: 26402585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in label-free screening approaches for studying sirtuin-mediated deacetylation.
    Rye PT; Frick LE; Ozbal CC; Lamarr WA
    J Biomol Screen; 2011 Dec; 16(10):1217-26. PubMed ID: 21911826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT3 substrate specificity determined by peptide arrays and machine learning.
    Smith BC; Settles B; Hallows WC; Craven MW; Denu JM
    ACS Chem Biol; 2011 Feb; 6(2):146-57. PubMed ID: 20945913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia.
    Gertz M; Steegborn C
    Biochim Biophys Acta; 2010 Aug; 1804(8):1658-65. PubMed ID: 19766741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular mechanism for direct sirtuin activation by resveratrol.
    Gertz M; Nguyen GT; Fischer F; Suenkel B; Schlicker C; Fränzel B; Tomaschewski J; Aladini F; Becker C; Wolters D; Steegborn C
    PLoS One; 2012; 7(11):e49761. PubMed ID: 23185430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates.
    Song HY; Park SH; Kang HJ; Vassilopoulos A
    J Vis Exp; 2016 Feb; (108):53563. PubMed ID: 26966987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition.
    Fischer F; Gertz M; Suenkel B; Lakshminarasimhan M; Schutkowski M; Steegborn C
    PLoS One; 2012; 7(9):e45098. PubMed ID: 23028781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based mechanism of ADP-ribosylation by sirtuins.
    Hawse WF; Wolberger C
    J Biol Chem; 2009 Nov; 284(48):33654-61. PubMed ID: 19801667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme.
    Yu J; Haldar M; Mallik S; Srivastava DK
    PLoS One; 2016; 11(3):e0152467. PubMed ID: 27023330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3.
    Parodi-Rullán RM; Chapa-Dubocq XR; Javadov S
    Front Physiol; 2018; 9():1094. PubMed ID: 30131726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.