These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23995940)
1. Probing the functional diversity of global pristine soil communities with 3-chlorobenzoate reveals that communities of generalists dominate catabolic transformation. Rhodes AN; Fulthorpe RR; Tiedje JM Appl Environ Microbiol; 2013 Nov; 79(22):6932-40. PubMed ID: 23995940 [TBL] [Abstract][Full Text] [Related]
2. Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Fulthorpe RR; Rhodes AN; Tiedje JM Appl Environ Microbiol; 1996 Apr; 62(4):1159-66. PubMed ID: 8919776 [TBL] [Abstract][Full Text] [Related]
3. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Gentry TJ; Wang G; Rensing C; Pepper IL Microb Ecol; 2004 Jul; 48(1):90-102. PubMed ID: 15085300 [TBL] [Abstract][Full Text] [Related]
4. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. Qi Y; Zhao L; Olusheyi OZ; Tan X J Environ Sci (China); 2007; 19(3):332-7. PubMed ID: 17918596 [TBL] [Abstract][Full Text] [Related]
5. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Fulthorpe RR; Rhodes AN; Tiedje JM Appl Environ Microbiol; 1998 May; 64(5):1620-7. PubMed ID: 9572926 [TBL] [Abstract][Full Text] [Related]
6. Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT. Ajithkumar PV; Kunhi AA Biodegradation; 2000; 11(4):247-61. PubMed ID: 11432583 [TBL] [Abstract][Full Text] [Related]
7. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill. Peel MC; Wyndham RC Appl Environ Microbiol; 1999 Apr; 65(4):1627-35. PubMed ID: 10103260 [TBL] [Abstract][Full Text] [Related]
8. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540 [TBL] [Abstract][Full Text] [Related]
9. Isolation and Genomic Analysis of 3-Chlorobenzoate-Degrading Bacteria from Soil. Ara I; Moriuchi R; Dohra H; Kimbara K; Ogawa N; Shintani M Microorganisms; 2023 Jun; 11(7):. PubMed ID: 37512857 [TBL] [Abstract][Full Text] [Related]
10. Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Enhanced contaminant remediation via activated soil bioaugmentation. Gentry TJ; Josephson KL; Pepper IL Biodegradation; 2004 Feb; 15(1):67-75. PubMed ID: 14971859 [TBL] [Abstract][Full Text] [Related]
11. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic. Pavlû L; Vosáhlová J; Klierová H; Prouza M; Demnerová K; Brenner V J Appl Microbiol; 1999 Sep; 87(3):381-6. PubMed ID: 10540240 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Urgun-Demirtas M; Pagilla KR; Stark BC; Webster D Biodegradation; 2003 Oct; 14(5):357-65. PubMed ID: 14571952 [TBL] [Abstract][Full Text] [Related]
13. Soil microbial population dynamics following bioaugmentation with a 3-chlorobenzoate-degrading bacterial culture. Bioaugmentation effects on soil microorganisms. Gentry TJ; Newby DT; Josephson KL; Pepper IL Biodegradation; 2001; 12(5):349-57. PubMed ID: 11998824 [TBL] [Abstract][Full Text] [Related]
14. Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Fulthorpe RR; Wyndham RC Appl Environ Microbiol; 1992 Jan; 58(1):314-25. PubMed ID: 1311543 [TBL] [Abstract][Full Text] [Related]
15. Characterization of multiple chlorobenzoic acid-degrading organisms from pristine and contaminated systems: mineralization of 2,4-dichlorobenzoic acid. Adebusoye SA; Miletto M Bioresour Technol; 2011 Feb; 102(3):3041-8. PubMed ID: 21074990 [TBL] [Abstract][Full Text] [Related]
16. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Hickey WJ; Focht DD Appl Environ Microbiol; 1990 Dec; 56(12):3842-50. PubMed ID: 2128010 [TBL] [Abstract][Full Text] [Related]
17. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders. Focht DD; Searles DB; Koh SC Appl Environ Microbiol; 1996 Oct; 62(10):3910-3. PubMed ID: 8837452 [TBL] [Abstract][Full Text] [Related]
18. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors. Bae HS; Yamagishi T; Suwa Y Chemosphere; 2004 Apr; 55(1):93-100. PubMed ID: 14720551 [TBL] [Abstract][Full Text] [Related]
19. Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Sylvestre M; Mailhiot K; Ahmad D; Massé R Can J Microbiol; 1989 Apr; 35(4):439-43. PubMed ID: 2743216 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. Yi H; Min K; Kim C; Ka J FEMS Microbiol Ecol; 2000 Jan; 31(1):53-60. PubMed ID: 10620719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]