BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23996005)

  • 1. Assessment of epidural versus intradiscal biocompatibility of PEEK implant debris: an in vivo rabbit model.
    Hallab NJ; Bao QB; Brown T
    Eur Spine J; 2013 Dec; 22(12):2740-51. PubMed ID: 23996005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model.
    Cunningham BW; Hallab NJ; Hu N; McAfee PC
    J Neurosurg Spine; 2013 Sep; 19(3):336-50. PubMed ID: 23808583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal implant debris-induced osteolysis.
    Hallab NJ; Cunningham BW; Jacobs JJ
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S125-38. PubMed ID: 14560184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro assessment of wear particulate generated from NUBAC: a PEEK-on-PEEK articulating nucleus replacement device: methodology and results from a series of wear tests using different motion profiles, test frequencies, and environmental conditions.
    Brown T; Bao QB; Agrawal CM; Hallab NJ
    Spine (Phila Pa 1976); 2011 Dec; 36(26):E1675-85. PubMed ID: 21494194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.
    Stratton-Powell AA; Pasko KM; Brockett CL; Tipper JL
    Clin Orthop Relat Res; 2016 Nov; 474(11):2394-2404. PubMed ID: 27432420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage reactivity to different polymers demonstrates particle size- and material-specific reactivity: PEEK-OPTIMA(®) particles versus UHMWPE particles in the submicron, micron, and 10 micron size ranges.
    Hallab NJ; McAllister K; Brady M; Jarman-Smith M
    J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):480-92. PubMed ID: 22102421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.
    Siskey R; Ciccarelli L; Lui MK; Kurtz SM
    Clin Orthop Relat Res; 2016 Nov; 474(11):2428-2440. PubMed ID: 27677290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of spinal instrumentation particulate wear debris. an in vivo rabbit model and applied clinical study of retrieved instrumentation cases.
    Cunningham BW; Orbegoso CM; Dmitriev AE; Hallab NJ; Sefter JC; Asdourian P; McAfee PC
    Spine J; 2003; 3(1):19-32. PubMed ID: 14589241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model.
    Du Z; Zhu Z; Wang Y
    J Orthop Surg Res; 2018 Jan; 13(1):23. PubMed ID: 29386035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits.
    Rivard CH; Rhalmi S; Coillard C
    J Biomed Mater Res; 2002 Dec; 62(4):488-98. PubMed ID: 12221696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic scientific considerations in total disc arthroplasty.
    Cunningham BW
    Spine J; 2004; 4(6 Suppl):219S-230S. PubMed ID: 15541670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt-chromium alloy particles.
    Hallab NJ; Chan FW; Harper ML
    Eur Spine J; 2012 Dec; 21(12):2649-58. PubMed ID: 22407269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of resorption and biocompatibility of collagen hemostats in the spinal epidural space.
    Mizuno K; Ikeda T; Ikoma K; Ishibashi H; Tonomura H; Nagae M; Arai Y; Fujiwara H; Mikami Y; Kubo T
    Spine J; 2014 Sep; 14(9):2141-9. PubMed ID: 24486475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical high-molecular-weight hyaluronan and a roofing barrier sheet equally inhibit postlaminectomy fibrosis.
    Akeson WH; Massie JB; Huang B; Giurea A; Sah R; Garfin SR; Kim CW
    Spine J; 2005; 5(2):180-90. PubMed ID: 15749618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periprosthetic UHMWPE Wear Debris Induces Inflammation, Vascularization, and Innervation After Total Disc Replacement in the Lumbar Spine.
    Veruva SY; Lanman TH; Isaza JE; Freeman TA; Kurtz SM; Steinbeck MJ
    Clin Orthop Relat Res; 2017 May; 475(5):1369-1381. PubMed ID: 27488379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?
    Kienle A; Graf N; Wilke HJ
    Spine J; 2016 Feb; 16(2):235-42. PubMed ID: 26409208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Immunologic and Biomechanical Comparison of Polyether Ether Ketone-Zeolite and Polyether Ether Ketone Interbody Fusion Devices.
    Cheng BC; Swink I; McClain EJ; Vyas PS; Muzzonigro T; Carbone J; Zaidi A; Long JD; Altman DT; Yu AK
    Spine (Phila Pa 1976); 2023 Aug; 48(16):1174-1180. PubMed ID: 37235799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo.
    Lorber V; Paulus AC; Buschmann A; Schmitt B; Grupp TM; Jansson V; Utzschneider S
    J Mater Sci Mater Med; 2014 Jan; 25(1):141-9. PubMed ID: 24068541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stainless steel wear debris of a scoliotic growth guidance system has little local and systemic effect in an animal model.
    Singh V; Rawlinson J; Hallab N
    J Orthop Res; 2018 Jul; 36(7):1980-1990. PubMed ID: 29323741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of the biologic effects of spine implant debris: Fact from fiction.
    Hallab NJ
    SAS J; 2009; 3(4):143-60. PubMed ID: 25802640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.