BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23996250)

  • 1. Screening for host proteins with pro- and antiviral activity using high-throughput RNAi.
    Griffiths SJ
    Methods Mol Biol; 2013; 1064():71-90. PubMed ID: 23996250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platforms for RNA interference screening of virus-host interactions.
    Schudel BR; Harmon B; Abhyankar VV; Pruitt BW; Negrete OA; Singh AK
    Lab Chip; 2013 Mar; 13(5):811-7. PubMed ID: 23361404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.
    Griffiths SJ; Koegl M; Boutell C; Zenner HL; Crump CM; Pica F; Gonzalez O; Friedel CC; Barry G; Martin K; Craigon MH; Chen R; Kaza LN; Fossum E; Fazakerley JK; Efstathiou S; Volpi A; Zimmer R; Ghazal P; Haas J
    PLoS Pathog; 2013; 9(8):e1003514. PubMed ID: 23950709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of virus-derived small interfering RNAs in RNA silencing in plants.
    Zhu H; Guo H
    Sci China Life Sci; 2012 Feb; 55(2):119-25. PubMed ID: 22415682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological chemistry of virus-encoded suppressors of RNA silencing: an overview.
    Omarov RT; Scholthof HB
    Methods Mol Biol; 2012; 894():39-56. PubMed ID: 22678571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.
    Kelly BJ; Diefenbach E; Fraefel C; Diefenbach RJ
    Biochem Biophys Res Commun; 2012 Jan; 417(3):961-5. PubMed ID: 22202175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion.
    Zhao HF; L'Abbé D; Jolicoeur N; Wu M; Li Z; Yu Z; Shen SH
    Nat Methods; 2005 Dec; 2(12):967-73. PubMed ID: 16299483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illuminating the host - how RNAi screens shed light on host-pathogen interactions.
    Prudêncio M; Lehmann MJ
    Biotechnol J; 2009 Jun; 4(6):826-37. PubMed ID: 19507150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA.
    Sabbioni S; Callegari E; Manservigi M; Argnani R; Corallini A; Negrini M; Manservigi R
    Gene Ther; 2007 Mar; 14(5):459-64. PubMed ID: 17051250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying HIV-1 host cell factors by genome-scale RNAi screening.
    Pache L; König R; Chanda SK
    Methods; 2011 Jan; 53(1):3-12. PubMed ID: 20654720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput selection of effective RNAi probes for gene silencing.
    Kumar R; Conklin DS; Mittal V
    Genome Res; 2003 Oct; 13(10):2333-40. PubMed ID: 14525931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference for the identification of disease-associated genes.
    Nencioni A; Sandy P; Dillon C; Kissler S; Blume-Jensen P; Van Parijs L
    Curr Opin Mol Ther; 2004 Apr; 6(2):136-40. PubMed ID: 15195924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line: convergence of RNAi-related pathways and IFN-related pathways in antiviral response.
    Dang LT; Kondo H; Aoki T; Hirono I
    Antiviral Res; 2008 Dec; 80(3):316-23. PubMed ID: 18687362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small RNAs and the control of transposons and viruses in Drosophila.
    van Rij RP; Berezikov E
    Trends Microbiol; 2009 Apr; 17(4):163-71. PubMed ID: 19299135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfering with hepatitis C virus RNA replication.
    Randall G; Rice CM
    Virus Res; 2004 Jun; 102(1):19-25. PubMed ID: 15068876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA silencing: an antiviral mechanism.
    Csorba T; Pantaleo V; Burgyán J
    Adv Virus Res; 2009; 75():35-71. PubMed ID: 20109663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA.
    Zhe R; Mei-Ying Z; Kitazato K; Kobayash N; Qin-Chang Z; Pei-Zhuo Z; Zhi-Rong Y; Yi-Fei W
    Arch Virol; 2008; 153(7):1401-6. PubMed ID: 18551244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems-level analysis of host-pathogen interaction using RNA interference.
    Eicher SC; Dehio C
    N Biotechnol; 2013 Mar; 30(3):308-13. PubMed ID: 23395778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production.
    Christensen HS; Daher A; Soye KJ; Frankel LB; Alexander MR; Lainé S; Bannwarth S; Ong CL; Chung SW; Campbell SM; Purcell DF; Gatignol A
    J Virol; 2007 May; 81(10):5121-31. PubMed ID: 17360756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.