BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23996387)

  • 1. Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria.
    Chan PH; Wong SY; Lin SH; Chen YC
    Rapid Commun Mass Spectrom; 2013 Oct; 27(19):2143-8. PubMed ID: 23996387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.
    Chan PH; Chen YC
    Anal Chem; 2012 Nov; 84(21):8952-6. PubMed ID: 23088348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.
    Lai HZ; Wang SG; Wu CY; Chen YC
    Anal Chem; 2015 Feb; 87(4):2114-20. PubMed ID: 25587929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry.
    Wang XH; Zhang G; Fan YY; Yang X; Sui WJ; Lu XX
    J Microbiol Methods; 2013 Mar; 92(3):231-5. PubMed ID: 23305925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria.
    Chen WY; Lin JY; Chen WJ; Luo L; Wei-Guang Diau E; Chen YC
    Nanomedicine (Lond); 2010 Jul; 5(5):755-64. PubMed ID: 20662646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Seng P; Drancourt M; Gouriet F; La Scola B; Fournier PE; Rolain JM; Raoult D
    Clin Infect Dis; 2009 Aug; 49(4):543-51. PubMed ID: 19583519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture.
    Biswas S; Rolain JM
    J Microbiol Methods; 2013 Jan; 92(1):14-24. PubMed ID: 23154044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria.
    Lin YS; Tsai PJ; Weng MF; Chen YC
    Anal Chem; 2005 Mar; 77(6):1753-60. PubMed ID: 15762582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification.
    Carbonnelle E; Grohs P; Jacquier H; Day N; Tenza S; Dewailly A; Vissouarn O; Rottman M; Herrmann JL; Podglajen I; Raskine L
    J Microbiol Methods; 2012 May; 89(2):133-6. PubMed ID: 22425492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes.
    Selvaprakash K; Chen YC
    Biosens Bioelectron; 2017 Jun; 92():410-416. PubMed ID: 27836610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria.
    Chen WJ; Tsai PJ; Chen YC
    Anal Chem; 2008 Dec; 80(24):9612-21. PubMed ID: 19007241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.
    Russell BA; Jachimska B; Komorek P; Mulheran PA; Chen Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):7228-7235. PubMed ID: 28234394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis.
    Li S; Guo Z; Liu Y; Yang Z; Hui HK
    Talanta; 2009 Nov; 80(1):313-20. PubMed ID: 19782231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Agrawal K; Wu HF
    Rapid Commun Mass Spectrom; 2008; 22(3):283-90. PubMed ID: 18186457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting lysozyme unfolding via the fluorescence of lysozyme encapsulated gold nanoclusters.
    Alkudaisi N; Russell BA; Jachimska B; Birch DJS; Chen Y
    J Mater Chem B; 2019 Feb; 7(7):1167-1175. PubMed ID: 32254785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions.
    Alkudaisi N; Russell BA; Birch DJS; Chen Y
    J Photochem Photobiol B; 2019 Aug; 197():111540. PubMed ID: 31276926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS.
    Wu HF; Agrawal K; Shrivas K; Lee YH
    J Mass Spectrom; 2010 Dec; 45(12):1402-8. PubMed ID: 20967754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS.
    Shastri L; Kailasa SK; Wu HF
    Talanta; 2010 Jun; 81(4-5):1176-82. PubMed ID: 20441881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water.
    Guo Z; Liu Y; Li S; Yang Z
    Rapid Commun Mass Spectrom; 2009 Dec; 23(24):3983-93. PubMed ID: 19918936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils.
    Tseng WB; Rau JY; Chiou HC; Tseng WL
    Environ Res; 2022 May; 207():112144. PubMed ID: 34619120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.