BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23996440)

  • 21. Regulation of transcription by acetate in Escherichia coli: in vivo and in vitro comparisons.
    Rosenthal AZ; Kim Y; Gralla JD
    Mol Microbiol; 2008 May; 68(4):907-17. PubMed ID: 18331469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of A(n) tracts within the UP element proximal subsite of a model promoter on kinetics of open complex formation by Escherichia coli RNA polymerase.
    Kolasa IK; Loziński T; Wierzchowski KL
    Acta Biochim Pol; 2002; 49(3):659-69. PubMed ID: 12422236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme.
    Steuten B; Setny P; Zacharias M; Wagner R
    J Mol Biol; 2013 Oct; 425(19):3649-61. PubMed ID: 23867276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel mutant of green fluorescent protein with enhanced sensitivity for microanalysis at 488 nm excitation.
    Ito Y; Suzuki M; Husimi Y
    Biochem Biophys Res Commun; 1999 Oct; 264(2):556-60. PubMed ID: 10529401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Spinach aptamer to correlate mRNA and protein levels in Escherichia coli.
    Pothoulakis G; Ellis T
    Methods Enzymol; 2015; 550():173-85. PubMed ID: 25605386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential green fluorescent protein expression from mycobacterial promoter constructs in Escherichia coli and Mycobacterium marinum.
    Gall K; Barker LP
    FEMS Microbiol Lett; 2006 Feb; 255(2):301-7. PubMed ID: 16448510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ
    Levy L; Anavy L; Solomon O; Cohen R; Brunwasser-Meirom M; Ohayon S; Atar O; Goldberg S; Yakhini Z; Amit R
    Cell Rep; 2017 Oct; 21(3):845-858. PubMed ID: 29045849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Both regions 4.1 and 4.2 of E. coli sigma(70) are together required for binding to bacteriophage T4 AsiA in vivo.
    Sharma UK; Chatterji D
    Gene; 2006 Jul; 376(1):133-43. PubMed ID: 16545925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The spinach RNA aptamer as a characterization tool for synthetic biology.
    Pothoulakis G; Ceroni F; Reeve B; Ellis T
    ACS Synth Biol; 2014 Mar; 3(3):182-7. PubMed ID: 23991760
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Armetta J; Schantz-Klausen M; Shepelin D; Vazquez-Uribe R; Bahl MI; Laursen MF; Licht TR; Sommer MOA
    ACS Synth Biol; 2021 Dec; 10(12):3359-3368. PubMed ID: 34842418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.
    Sun ZZ; Yeung E; Hayes CA; Noireaux V; Murray RM
    ACS Synth Biol; 2014 Jun; 3(6):387-97. PubMed ID: 24303785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Screening of Core Promoter Activity.
    Even DY; Kedmi A; Ideses D; Juven-Gershon T
    Methods Mol Biol; 2017; 1651():77-91. PubMed ID: 28801901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters.
    Patel YD; Brown AJ; Zhu J; Rosignoli G; Gibson SJ; Hatton D; James DC
    ACS Synth Biol; 2021 May; 10(5):1155-1165. PubMed ID: 33939428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology.
    Chappell J; Jensen K; Freemont PS
    Nucleic Acids Res; 2013 Mar; 41(5):3471-81. PubMed ID: 23371936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene circuit performance characterization and resource usage in a cell-free "breadboard".
    Siegal-Gaskins D; Tuza ZA; Kim J; Noireaux V; Murray RM
    ACS Synth Biol; 2014 Jun; 3(6):416-25. PubMed ID: 24670245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of green fluorescent protein in Bacillus brevis under the control of a novel constitutive promoter F1 and insertion mutagenesis of F1 in Escherichia coli DH5alpha.
    Chen Y; Yan J; Yang M; Wang J; Shen D
    FEMS Microbiol Lett; 2003 Dec; 229(1):111-7. PubMed ID: 14659550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli.
    Beal J; Haddock-Angelli T; Gershater M; de Mora K; Lizarazo M; Hollenhorst J; Rettberg R;
    PLoS One; 2016; 11(3):e0150182. PubMed ID: 26937966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Composability of regulatory sequences controlling transcription and translation in Escherichia coli.
    Kosuri S; Goodman DB; Cambray G; Mutalik VK; Gao Y; Arkin AP; Endy D; Church GM
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):14024-9. PubMed ID: 23924614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.
    Pasotti L; Politi N; Zucca S; Cusella De Angelis MG; Magni P
    PLoS One; 2012; 7(7):e39407. PubMed ID: 22911685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High throughput studies of gene expression using green fluorescent protein-oxidative stress promoter probe constructs: the potential for living chips.
    Albano CR; Lu C; Bentley WE; Rao G
    J Biomol Screen; 2001 Dec; 6(6):421-8. PubMed ID: 11788060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.