These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23996513)
21. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Hutson CB; Nichol JW; Aubin H; Bae H; Yamanlar S; Al-Haque S; Koshy ST; Khademhosseini A Tissue Eng Part A; 2011 Jul; 17(13-14):1713-23. PubMed ID: 21306293 [TBL] [Abstract][Full Text] [Related]
22. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration. Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941 [TBL] [Abstract][Full Text] [Related]
23. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Faghihi S; Karimi A; Jamadi M; Imani R; Salarian R Mater Sci Eng C Mater Biol Appl; 2014 May; 38():299-305. PubMed ID: 24656382 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504 [TBL] [Abstract][Full Text] [Related]
25. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
31. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650 [TBL] [Abstract][Full Text] [Related]
32. High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications. Pal V; Singh YP; Gupta D; Alioglu MA; Nagamine M; Kim MH; Ozbolat IT Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36927673 [TBL] [Abstract][Full Text] [Related]
33. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008 [TBL] [Abstract][Full Text] [Related]
34. Stiffness of photocrosslinkable gelatin hydrogel influences nucleus pulposus cell propertiesin vitro. Xu P; Guan J; Chen Y; Xiao H; Yang T; Sun H; Wu N; Zhang C; Mao Y J Cell Mol Med; 2021 Jan; 25(2):880-891. PubMed ID: 33289319 [TBL] [Abstract][Full Text] [Related]
35. Graphene Oxide Functionalized Gelatin Methacryloyl Microgel for Enhanced Biomimetic Mineralization and in situ Bone Repair. Peng X; Liu X; Yang Y; Yu M; Sun Z; Chen X; Hu K; Yang J; Xiong S; Wang B; Ma L; Wang Z; Cheng H; Zhou C Int J Nanomedicine; 2023; 18():6725-6741. PubMed ID: 38026526 [TBL] [Abstract][Full Text] [Related]
36. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation. Lee GM; Kim SJ; Kim EM; Kim E; Lee S; Lee E; Park HH; Shin H Acta Biomater; 2022 Sep; 149():96-110. PubMed ID: 35779769 [TBL] [Abstract][Full Text] [Related]
37. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]