These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23996513)
41. An injectable mechanically robust hydrogel of Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth. Mokhtari H; Kharaziha M; Karimzadeh F; Tavakoli S Carbohydr Polym; 2019 Jun; 214():234-249. PubMed ID: 30925993 [TBL] [Abstract][Full Text] [Related]
42. Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications. Rehman SRU; Augustine R; Zahid AA; Ahmed R; Tariq M; Hasan A Int J Nanomedicine; 2019; 14():9603-9617. PubMed ID: 31824154 [TBL] [Abstract][Full Text] [Related]
43. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
44. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619 [TBL] [Abstract][Full Text] [Related]
45. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402 [TBL] [Abstract][Full Text] [Related]
46. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
47. Thermo- and pH-Responsive Gelatin/Polyphenolic Tannin/Graphene Oxide Hydrogels for Efficient Methylene Blue Delivery. de Oliveira AC; Souza PR; Vilsinski BH; Winkler MEG; Bruschi ML; Radovanovic E; Muniz EC; Caetano W; Valente AJM; Martins AF Molecules; 2021 Jul; 26(15):. PubMed ID: 34361681 [TBL] [Abstract][Full Text] [Related]
48. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Sakr MA; Sakthivel K; Hossain T; Shin SR; Siddiqua S; Kim J; Kim K J Biomed Mater Res A; 2022 Mar; 110(3):708-724. PubMed ID: 34558808 [TBL] [Abstract][Full Text] [Related]
49. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels. Chansoria P; Asif S; Polkoff K; Chung J; Piedrahita JA; Shirwaiker RA ACS Biomater Sci Eng; 2021 Nov; 7(11):5175-5188. PubMed ID: 34597013 [TBL] [Abstract][Full Text] [Related]
50. A Porous Gelatin Methacrylate-Based Material for 3D Cell-Laden Constructs. Bova L; Maggiotto F; Micheli S; Giomo M; Sgarbossa P; Gagliano O; Falcone D; Cimetta E Macromol Biosci; 2023 Feb; 23(2):e2200357. PubMed ID: 36305383 [TBL] [Abstract][Full Text] [Related]
51. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies. Nazir F; Ashraf I; Iqbal M; Ahmad T; Anjum S Int J Biol Macromol; 2021 Aug; 185():419-433. PubMed ID: 34166695 [TBL] [Abstract][Full Text] [Related]
53. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Zheng J; Zhao F; Zhang W; Mo Y; Zeng L; Li X; Chen X Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():119-127. PubMed ID: 29752080 [TBL] [Abstract][Full Text] [Related]
54. Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin immobilization. di Luca M; Vittorio O; Cirillo G; Curcio M; Czuban M; Voli F; Farfalla A; Hampel S; Nicoletta FP; Iemma F Int J Pharm; 2018 Jul; 546(1-2):50-60. PubMed ID: 29758346 [TBL] [Abstract][Full Text] [Related]
55. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. Zhuang P; Ng WL; An J; Chua CK; Tan LP PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827 [TBL] [Abstract][Full Text] [Related]
56. Injectable and mechanically robust 4-arm PPO-PEO/graphene oxide composite hydrogels for biomedical applications. Lee Y; Bae JW; Hoang Thi TT; Park KM; Park KD Chem Commun (Camb); 2015 May; 51(42):8876-9. PubMed ID: 25925723 [TBL] [Abstract][Full Text] [Related]
57. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Young AT; White OC; Daniele MA Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384 [TBL] [Abstract][Full Text] [Related]
58. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
59. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs. Athirasala A; Lins F; Tahayeri A; Hinds M; Smith AJ; Sedgley C; Ferracane J; Bertassoni LE Sci Rep; 2017 Jun; 7(1):3323. PubMed ID: 28607361 [TBL] [Abstract][Full Text] [Related]
60. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]