These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23996860)
21. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Zahedmanesh H; Lally C Med Biol Eng Comput; 2009 Apr; 47(4):385-93. PubMed ID: 19189146 [TBL] [Abstract][Full Text] [Related]
22. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049 [TBL] [Abstract][Full Text] [Related]
23. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction. Chen MC; Lu PC; Chen JS; Hwang NH ASAIO J; 2005; 51(4):313-20. PubMed ID: 16156292 [TBL] [Abstract][Full Text] [Related]
24. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. LaDisa JF; Olson LE; Guler I; Hettrick DA; Audi SH; Kersten JR; Warltier DC; Pagel PS J Appl Physiol (1985); 2004 Jul; 97(1):424-30; discussion 416. PubMed ID: 14766776 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Wang H; Liu J; Zheng X; Rong X; Zheng X; Peng H; Silber-Li Z; Li M; Liu L Sci Rep; 2015 Jun; 5():10945. PubMed ID: 26042609 [TBL] [Abstract][Full Text] [Related]
26. Compound ex vivo and in silico method for hemodynamic analysis of stented arteries. Rikhtegar F; Pacheco F; Wyss C; Stok KS; Ge H; Choo RJ; Ferrari A; Poulikakos D; Müller R; Kurtcuoglu V PLoS One; 2013; 8(3):e58147. PubMed ID: 23516442 [TBL] [Abstract][Full Text] [Related]
27. Restenosis following placement of an intracoronary heparin treated tantulum stent in the hyperlipidemic miniature swine model. Jenkins JS; Webel R; Laughlin MH; Rowland SM; Yoklavich MF; Amann JF; Branson K; Myers PR J Invasive Cardiol; 1995; 7(6):173-82. PubMed ID: 10155102 [TBL] [Abstract][Full Text] [Related]
28. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related]
29. [Experimental study of Mytrolimus-eluting stents on preventing restenosis in porcine coronary model]. Qiu H; Gao RL; Tang ZR; Meng L; Zhao H; Ruan YM; Zhao H; Yang YJ; Chen JL; Chen ZJ Zhonghua Xin Xue Guan Bing Za Zhi; 2005 Jun; 33(6):561-4. PubMed ID: 16053797 [TBL] [Abstract][Full Text] [Related]
30. Identification of hemodynamically optimal coronary stent designs based on vessel caliber. Gundert TJ; Marsden AL; Yang W; Marks DS; LaDisa JF IEEE Trans Biomed Eng; 2012 Jul; 59(7):1992-2002. PubMed ID: 22547450 [TBL] [Abstract][Full Text] [Related]
31. Study of the evolution of the shear stress on the restenosis after coronary angioplasty. García J; Crespo A; Goicolea J; Sanmartín M; García C J Biomech; 2006; 39(5):799-805. PubMed ID: 16488219 [TBL] [Abstract][Full Text] [Related]
32. [Survey of coronary stents development for restenosis prevention]. Chen J; Ni Z; Gu X Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Nov; 33(6):429-34. PubMed ID: 20352916 [TBL] [Abstract][Full Text] [Related]
33. [The role of haemodynamic factors in the development of in-stent restenosis]. Wasilewski J; Osadnik T; Peryt Stawiarska S; Poloński L Kardiol Pol; 2012; 70(11):1194-8. PubMed ID: 23180536 [TBL] [Abstract][Full Text] [Related]
34. Biocompatibility of tetramethylpyrazine-eluting stents in normal porcine coronary arteries. Ma GS; Chen LJ; Chen Z; Ding S; Shen CX; Feng Y Biomed Pharmacother; 2008 Feb; 62(2):125-9. PubMed ID: 17764890 [TBL] [Abstract][Full Text] [Related]
35. On the necessity of modelling fluid-structure interaction for stented coronary arteries. Chiastra C; Migliavacca F; Martínez MÁ; Malvè M J Mech Behav Biomed Mater; 2014 Jun; 34():217-30. PubMed ID: 24607760 [TBL] [Abstract][Full Text] [Related]
36. Restenosis is not associated with stent length in a pig model of coronary stent implantation. Koutouzis M; Papalois A; Kyrzopoulos S; Dafnomili P; Kyriakides ZS Cardiol J; 2008; 15(5):458-62. PubMed ID: 18810722 [TBL] [Abstract][Full Text] [Related]
37. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. Morlacchi S; Chiastra C; Gastaldi D; Pennati G; Dubini G; Migliavacca F J Biomech Eng; 2011 Dec; 133(12):121010. PubMed ID: 22206427 [TBL] [Abstract][Full Text] [Related]
38. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. Wentzel JJ; Whelan DM; van der Giessen WJ; van Beusekom HM; Andhyiswara I; Serruys PW; Slager CJ; Krams R J Biomech; 2000 Oct; 33(10):1287-95. PubMed ID: 10899339 [TBL] [Abstract][Full Text] [Related]
39. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. Carter AJ; Laird JR; Kufs WM; Bailey L; Hoopes TG; Reeves T; Farb A; Virmani R J Am Coll Cardiol; 1996 Apr; 27(5):1270-7. PubMed ID: 8609355 [TBL] [Abstract][Full Text] [Related]
40. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. Fu W; Gu Z; Meng X; Chu B; Qiao A J Biomech; 2010 May; 43(7):1337-42. PubMed ID: 20227079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]