BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23996876)

  • 1. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.
    Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S
    ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries.
    Wang S; Ren Y; Liu G; Xing Y; Zhang S
    Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance.
    Sun Y; Hu X; Luo W; Xu H; Hu C; Huang Y
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10145-50. PubMed ID: 24066738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Han X; Hu Y; Cheng F; Chen J
    Nanoscale; 2014 Apr; 6(7):3522-5. PubMed ID: 24577589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable synthesis of hollow bipyramid β-MnO(2) and its high electrochemical performance for lithium storage.
    Chen WM; Qie L; Shao QG; Yuan LX; Zhang WX; Huang YH
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3047-53. PubMed ID: 22658801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries.
    Thauer E; Ottmann A; Schneider P; Möller L; Deeg L; Zeus R; Wilhelmi F; Schlestein L; Neef C; Ghunaim R; Gellesch M; Nowka C; Scholz M; Haft M; Wurmehl S; Wenelska K; Mijowska E; Kapoor A; Bajpai A; Hampel S; Klingeler R
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32120977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries.
    Zhu J; Lei D; Zhang G; Li Q; Lu B; Wang T
    Nanoscale; 2013 Jun; 5(12):5499-505. PubMed ID: 23670638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of low-defect-density graphene/MnO2 composite and its electrochemical performance.
    He G; Yuan Y; Wang L; Chen H; Sun X; Wang X
    J Nanosci Nanotechnol; 2013 Jan; 13(1):487-92. PubMed ID: 23646759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.