These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
658 related articles for article (PubMed ID: 23996893)
1. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. Markolf KL; Jackson SR; Foster B; McAllister DR J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893 [TBL] [Abstract][Full Text] [Related]
2. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study. Liu-Barba D; Hull ML; Howell SM J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385 [TBL] [Abstract][Full Text] [Related]
3. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
4. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal. Markolf KL; Jackson SR; McAllister DR Am J Sports Med; 2012 Feb; 40(2):332-8. PubMed ID: 22085731 [TBL] [Abstract][Full Text] [Related]
5. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029 [TBL] [Abstract][Full Text] [Related]
6. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Gabriel MT; Wong EK; Woo SL; Yagi M; Debski RE J Orthop Res; 2004 Jan; 22(1):85-9. PubMed ID: 14656664 [TBL] [Abstract][Full Text] [Related]
7. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Kanamori A; Woo SL; Ma CB; Zeminski J; Rudy TW; Li G; Livesay GA Arthroscopy; 2000 Sep; 16(6):633-9. PubMed ID: 10976125 [TBL] [Abstract][Full Text] [Related]
8. Correlation of axial impact forces with knee joint forces and kinematics during simulated ski-landing. Yeow CH; Kong CY; Lee PV; Goh JC J Sports Sci; 2011 Aug; 29(11):1143-51. PubMed ID: 21774750 [TBL] [Abstract][Full Text] [Related]
9. Effects of Anterior Closing Wedge Tibial Osteotomy on Anterior Cruciate Ligament Force and Knee Kinematics. Yamaguchi KT; Cheung EC; Markolf KL; Boguszewski DV; Mathew J; Lama CJ; McAllister DR; Petrigliano FA Am J Sports Med; 2018 Feb; 46(2):370-377. PubMed ID: 29100001 [TBL] [Abstract][Full Text] [Related]
10. Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Nelitz M; Seitz AM; Bauer J; Reichel H; Ignatius A; Dürselen L Clin Biomech (Bristol); 2013 Mar; 28(3):285-90. PubMed ID: 23489478 [TBL] [Abstract][Full Text] [Related]
11. The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Kanamori A; Zeminski J; Rudy TW; Li G; Fu FH; Woo SL Arthroscopy; 2002 Apr; 18(4):394-8. PubMed ID: 11951198 [TBL] [Abstract][Full Text] [Related]
13. Quadriceps/anterior cruciate graft interaction. An in vitro study of joint kinematics and anterior cruciate ligament graft tension. Shoemaker SC; Adams D; Daniel DM; Woo SL Clin Orthop Relat Res; 1993 Sep; (294):379-90. PubMed ID: 8358944 [TBL] [Abstract][Full Text] [Related]
14. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. Fukuda Y; Woo SL; Loh JC; Tsuda E; Tang P; McMahon PJ; Debski RE J Orthop Res; 2003 Nov; 21(6):1107-12. PubMed ID: 14554225 [TBL] [Abstract][Full Text] [Related]
15. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Ellis BJ; Lujan TJ; Dalton MS; Weiss JA J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656 [TBL] [Abstract][Full Text] [Related]
16. Novel technique for evaluation of knee function continuously through the range of flexion. Bell KM; Arilla FV; Rahnemai-Azar AA; Fu FH; Musahl V; Debski RE J Biomech; 2015 Oct; 48(13):3728-31. PubMed ID: 26342768 [TBL] [Abstract][Full Text] [Related]
17. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Clin Biomech (Bristol); 2006 Nov; 21(9):977-83. PubMed ID: 16790304 [TBL] [Abstract][Full Text] [Related]
18. Effects of tibiofemoral compression on ACL forces and knee kinematics under combined knee loads. Markolf K; Yamaguchi K; Matthew J; McAllister D J Orthop Res; 2019 Mar; 37(3):631-639. PubMed ID: 30676657 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of the human triple-bundle anterior cruciate ligament. Kato Y; Ingham SJ; Maeyama A; Lertwanich P; Wang JH; Mifune Y; Kramer S; Smolinski P; Fu FH Arthroscopy; 2012 Feb; 28(2):247-54. PubMed ID: 22019233 [TBL] [Abstract][Full Text] [Related]
20. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]