These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
658 related articles for article (PubMed ID: 23996893)
21. Increasing the posterior tibial slope lowers in situ forces in the native ACL primarily at deep flexion angles. Winkler PW; Chan CK; Lucidi GA; Polamalu SK; Wagala NN; Hughes JD; Debski RE; Musahl V J Orthop Res; 2023 Jul; 41(7):1430-1438. PubMed ID: 36370132 [TBL] [Abstract][Full Text] [Related]
22. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087 [TBL] [Abstract][Full Text] [Related]
23. Effect of ACL transection on internal tibial rotation in an in vitro simulated pivot landing. Oh YK; Kreinbrink JL; Ashton-Miller JA; Wojtys EM J Bone Joint Surg Am; 2011 Feb; 93(4):372-80. PubMed ID: 21325589 [TBL] [Abstract][Full Text] [Related]
24. Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load. Lo J; Müller O; Wünschel M; Bauer S; Wülker N J Biomech; 2008; 41(9):1855-61. PubMed ID: 18513729 [TBL] [Abstract][Full Text] [Related]
25. The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue. Guenther D; Rahnemai-Azar AA; Bell KM; Irarrázaval S; Fu FH; Musahl V; Debski RE Am J Sports Med; 2017 Mar; 45(4):849-855. PubMed ID: 27932332 [TBL] [Abstract][Full Text] [Related]
26. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Li G; Papannagari R; DeFrate LE; Yoo JD; Park SE; Gill TJ Acta Orthop; 2007 Jun; 78(3):355-60. PubMed ID: 17611849 [TBL] [Abstract][Full Text] [Related]
27. Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study. Kent RN; Amirtharaj MJ; Hardy BM; Pearle AD; Wickiewicz TL; Imhauser CW J Biomech; 2018 Jun; 74():9-15. PubMed ID: 29752053 [TBL] [Abstract][Full Text] [Related]
28. Implant preloading in extension reduces spring length change in dynamic intraligamentary stabilization: a biomechanical study on passive kinematics of the knee. Häberli J; Voumard B; Kösters C; Delfosse D; Henle P; Eggli S; Zysset P Knee Surg Sports Traumatol Arthrosc; 2018 Dec; 26(12):3582-3592. PubMed ID: 29858655 [TBL] [Abstract][Full Text] [Related]
29. High Axial Loads While Walking Increase Anterior Tibial Translation in Intact and Anterior Cruciate Ligament-Deficient Knees. Kim JG; Bae TS; Lee SH; Jang KM; Jeong JS; Kyung BS; Lim HC; Ahn JH; Bae JH; Wang JH Arthroscopy; 2015 Jul; 31(7):1289-95. PubMed ID: 25842990 [TBL] [Abstract][Full Text] [Related]
30. Kinematics of the knee at high flexion angles: an in vitro investigation. Li G; Zayontz S; DeFrate LE; Most E; Suggs JF; Rubash HE J Orthop Res; 2004 Jan; 22(1):90-5. PubMed ID: 14656665 [TBL] [Abstract][Full Text] [Related]
31. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. Oh YK; Kreinbrink JL; Wojtys EM; Ashton-Miller JA J Orthop Res; 2012 Apr; 30(4):528-34. PubMed ID: 22025178 [TBL] [Abstract][Full Text] [Related]
32. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. Marouane H; Shirazi-Adl A; Adouni M; Hashemi J J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586 [TBL] [Abstract][Full Text] [Related]
33. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study. Wan C; Hao Z; Wen S J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897 [TBL] [Abstract][Full Text] [Related]
34. ACL Fibers Near the Lateral Intercondylar Ridge Are the Most Load Bearing During Stability Examinations and Isometric Through Passive Flexion. Nawabi DH; Tucker S; Schafer KA; Zuiderbaan HA; Nguyen JT; Wickiewicz TL; Imhauser CW; Pearle AD Am J Sports Med; 2016 Oct; 44(10):2563-2571. PubMed ID: 27440804 [TBL] [Abstract][Full Text] [Related]
36. The influence of muscle load on tibiofemoral knee kinematics. Victor J; Labey L; Wong P; Innocenti B; Bellemans J J Orthop Res; 2010 Apr; 28(4):419-28. PubMed ID: 19890990 [TBL] [Abstract][Full Text] [Related]
37. Tibiofemoral Kinematics During Compressive Loading of the ACL-Intact and ACL-Sectioned Knee: Roles of Tibial Slope, Medial Eminence Volume, and Anterior Laxity. Wang D; Kent RN; Amirtharaj MJ; Hardy BM; Nawabi DH; Wickiewicz TL; Pearle AD; Imhauser CW J Bone Joint Surg Am; 2019 Jun; 101(12):1085-1092. PubMed ID: 31220025 [TBL] [Abstract][Full Text] [Related]
38. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion. Moglo KE; Shirazi-Adl A J Biomech; 2005 May; 38(5):1075-83. PubMed ID: 15797589 [TBL] [Abstract][Full Text] [Related]
39. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489 [TBL] [Abstract][Full Text] [Related]
40. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. Wascher DC; Markolf KL; Shapiro MS; Finerman GA J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]