BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23996921)

  • 1. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries.
    Choi SH; Kang YC
    Small; 2014 Feb; 10(3):474-8. PubMed ID: 23996921
    [No Abstract]   [Full Text] [Related]  

  • 2. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis.
    Choi SH; Hong YJ; Kang YC
    Nanoscale; 2013 Sep; 5(17):7867-71. PubMed ID: 23846530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries.
    Du N; Chen Y; Zhai C; Zhang H; Yang D
    Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new strategy for synthesizing yolk-shell V₂O₅ powders with low melting temperature for high performance Li-ion batteries.
    Ko YN; Chan Kang Y; Park SB
    Nanoscale; 2013 Oct; 5(19):8899-903. PubMed ID: 23917375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries.
    Son MY; Hong YJ; Lee JK; Chan Kang Y
    Nanoscale; 2013 Dec; 5(23):11592-7. PubMed ID: 24122066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.
    Chen P; Wu F; Wang Y
    ChemSusChem; 2014 May; 7(5):1407-14. PubMed ID: 24648261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries.
    Choi SH; Kang YC
    Nanoscale; 2013 Jun; 5(11):4662-8. PubMed ID: 23615939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities.
    Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ
    Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.
    Jeun JH; Park KY; Kim DH; Kim WS; Kim HC; Lee BS; Kim H; Yu WR; Kang K; Hong SH
    Nanoscale; 2013 Sep; 5(18):8480-3. PubMed ID: 23897097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS₂ nanoplates for high-performance lithium-ion batteries.
    Du Y; Yin Z; Rui X; Zeng Z; Wu XJ; Liu J; Zhu Y; Zhu J; Huang X; Yan Q; Zhang H
    Nanoscale; 2013 Feb; 5(4):1456-9. PubMed ID: 23306599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.
    Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T
    Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralarge single crystal SnS rectangular nanosheets.
    Zhang Y; Lu J; Shen S; Xu H; Wang Q
    Chem Commun (Camb); 2011 May; 47(18):5226-8. PubMed ID: 21423977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties.
    Choi SH; Kang YC
    Chemistry; 2014 Mar; 20(11):3014-8. PubMed ID: 24532417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries.
    Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D
    Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.