These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23996976)

  • 1. Synthesis and characterization of biomimetic citrate-based biodegradable composites.
    Tran RT; Wang L; Zhang C; Huang M; Tang W; Zhang C; Zhang Z; Jin D; Banik B; Brown JL; Xie Z; Bai X; Yang J
    J Biomed Mater Res A; 2014 Aug; 102(8):2521-32. PubMed ID: 23996976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.
    He Y; Li Q; Ma C; Xie D; Li L; Zhao Y; Shan D; Chomos SK; Dong C; Tierney JW; Sun L; Lu D; Gui L; Yang J
    Acta Biomater; 2019 Jul; 93():180-191. PubMed ID: 30926580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and biocompatibility of a novel biomimetic material based on MGF-Ct24E modified poly(D, L-lactic acid).
    Li Y; Zhang B; Ruan C; Wang P; Sun J; Pan J; Wang Y
    J Biomed Mater Res A; 2012 Dec; 100(12):3496-502. PubMed ID: 22941771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.
    Deng M; Nair LS; Nukavarapu SP; Kumbar SG; Brown JL; Krogman NR; Weikel AL; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2010 Jan; 92(1):114-25. PubMed ID: 19165780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early tissue response to citric acid-based micro- and nanocomposites.
    Chung EJ; Qiu H; Kodali P; Yang S; Sprague SM; Hwong J; Koh J; Ameer GA
    J Biomed Mater Res A; 2011 Jan; 96(1):29-37. PubMed ID: 20949482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations.
    Xu H; Yan S; Gerhard E; Xie D; Liu X; Zhang B; Shi D; Ameer GA; Yang J
    Adv Mater; 2024 Aug; 36(32):e2402871. PubMed ID: 38801111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
    Masehi-Lano JJ; Chung EJ
    Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of material stiffness and negative pressure to enhance differentiation of bone marrow-derived stem cells and osteoblast proliferation.
    Wang R; Thayer P; Goldstein A; Wagner WD
    J Tissue Eng Regen Med; 2020 Feb; 14(2):295-305. PubMed ID: 31845531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO
    Kalantari E; Naghib SM; Iravani NJ; Esmaeili R; Naimi-Jamal MR; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109912. PubMed ID: 31546348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate chemistry and biology for biomaterials design.
    Ma C; Gerhard E; Lu D; Yang J
    Biomaterials; 2018 Sep; 178():383-400. PubMed ID: 29759730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.
    Gyawali D; Nair P; Kim HK; Yang J
    Biomater Sci; 2013 Jan; 1(1):52-64. PubMed ID: 23977427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A citric acid-based hydroxyapatite composite for orthopedic implants.
    Qiu H; Yang J; Kodali P; Koh J; Ameer GA
    Biomaterials; 2006 Dec; 27(34):5845-54. PubMed ID: 16919720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.
    Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X
    Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of osteoblast cells osteogenic differentiation and bone regeneration by hydroxyapatite/phosphoester modified poly(amino acid).
    Xiong Y; Huang J; Fu L; Ren H; Li S; Xia W; Yan Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110769. PubMed ID: 32279769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of carbon fiber reinforced polymer-hydroxyapatite ternary composite: A mechanically strong bioactive bone graft.
    Sarkar C; Sahu SK; Sinha A; Chakraborty J; Garai S
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():388-396. PubMed ID: 30678924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.