These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23997039)

  • 1. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.
    Hu Y; Shanjani Y; Toyserkani E; Grynpas M; Wang R; Pilliar R
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):274-83. PubMed ID: 23997039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.
    Hu Y; Pilliar R; Grynpas M; Kandel R; Werner-Zwanziger U; Filiaggi M
    J Mater Sci Mater Med; 2016 Jul; 27(7):117. PubMed ID: 27255688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications.
    Sheydaeian E; Vlasea M; Woo A; Pilliar R; Hu E; Toyserkani E
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):828-835. PubMed ID: 26804634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies.
    Shanjani Y; Hu Y; Toyserkani E; Grynpas M; Kandel RA; Pilliar RM
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):972-80. PubMed ID: 23529933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing and properties of Na-doped porous calcium polyphosphates - Mechanical properties and in vitro degradation characteristics.
    Pilliar RM; Hu X; Grynpas MD; Kandel RA
    J Mech Behav Biomed Mater; 2019 Mar; 91():355-365. PubMed ID: 30658249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous calcium polyphosphate as load-bearing bone substitutes: in vivo study.
    Pilliar RM; Kandel RA; Grynpas MD; Hu Y
    J Biomed Mater Res B Appl Biomater; 2013 Jan; 101(1):1-8. PubMed ID: 23143776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics.
    Porter NL; Pilliar RM; Grynpas MD
    J Biomed Mater Res; 2001 Sep; 56(4):504-15. PubMed ID: 11400128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous calcium polyphosphate scaffolds for bone substitute applications -- in vitro characterization.
    Pilliar RM; Filiaggi MJ; Wells JD; Grynpas MD; Kandel RA
    Biomaterials; 2001 May; 22(9):963-72. PubMed ID: 11311015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes.
    Shanjani Y; De Croos JN; Pilliar RM; Kandel RA; Toyserkani E
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):510-9. PubMed ID: 20162726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials.
    Zhang XY; Fang G; Leeflang S; Zadpoor AA; Zhou J
    Acta Biomater; 2019 Jan; 84():437-452. PubMed ID: 30537537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizations of additive manufactured porous titanium implants.
    Basalah A; Shanjani Y; Esmaeili S; Toyserkani E
    J Biomed Mater Res B Appl Biomater; 2012 Oct; 100(7):1970-9. PubMed ID: 22865677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure characterization of calcium polyphosphate bioceramics during sintering process].
    Gao X; Guo L; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):991-4. PubMed ID: 15646349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers.
    Shanjani Y; Hu Y; Pilliar RM; Toyserkani E
    Acta Biomater; 2011 Apr; 7(4):1788-96. PubMed ID: 21185409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints.
    Arabnejad S; Burnett Johnston R; Pura JA; Singh B; Tanzer M; Pasini D
    Acta Biomater; 2016 Jan; 30():345-356. PubMed ID: 26523335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.
    Bobbert FSL; Lietaert K; Eftekhari AA; Pouran B; Ahmadi SM; Weinans H; Zadpoor AA
    Acta Biomater; 2017 Apr; 53():572-584. PubMed ID: 28213101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.