These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23997094)

  • 1. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice.
    Roos CM; Hagler M; Zhang B; Oehler EA; Arghami A; Miller JD
    Am J Physiol Heart Circ Physiol; 2013 Nov; 305(10):H1428-39. PubMed ID: 23997094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.
    Wang S; Zhang M; Liang B; Xu J; Xie Z; Liu C; Viollet B; Yan D; Zou MH
    Circ Res; 2010 Apr; 106(6):1117-28. PubMed ID: 20167927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early life stress in male mice induces superoxide production and endothelial dysfunction in adulthood.
    Ho DH; Burch ML; Musall B; Musall JB; Hyndman KA; Pollock JS
    Am J Physiol Heart Circ Physiol; 2016 May; 310(9):H1267-74. PubMed ID: 26921433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.
    Du J; Fan LM; Mai A; Li JM
    Br J Pharmacol; 2013 Nov; 170(5):1064-77. PubMed ID: 23957783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction.
    Wenzel P; Schuhmacher S; Kienhöfer J; Müller J; Hortmann M; Oelze M; Schulz E; Treiber N; Kawamoto T; Scharffetter-Kochanek K; Münzel T; Bürkle A; Bachschmid MM; Daiber A
    Cardiovasc Res; 2008 Nov; 80(2):280-9. PubMed ID: 18596060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.
    Zhou RH; Vendrov AE; Tchivilev I; Niu XL; Molnar KC; Rojas M; Carter JD; Tong H; Stouffer GA; Madamanchi NR; Runge MS
    Arterioscler Thromb Vasc Biol; 2012 Mar; 32(3):745-55. PubMed ID: 22199367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.
    Zanetti M; Gortan Cappellari G; Burekovic I; Barazzoni R; Stebel M; Guarnieri G
    Exp Gerontol; 2010 Nov; 45(11):848-55. PubMed ID: 20637278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice.
    Lee S; Park Y; Dellsperger KC; Zhang C
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H306-14. PubMed ID: 21602470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway.
    Guo Y; Li P; Gao L; Zhang J; Yang Z; Bledsoe G; Chang E; Chao L; Chao J
    Aging Cell; 2017 Aug; 16(4):837-846. PubMed ID: 28544111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium.
    Shafique E; Torina A; Reichert K; Colantuono B; Nur N; Zeeshan K; Ravichandran V; Liu Y; Feng J; Zeeshan K; Benjamin LE; Irani K; Harrington EO; Sellke FW; Abid MR
    Cardiovasc Res; 2017 Feb; 113(2):234-246. PubMed ID: 28088753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of mitochondrial antioxidant manganese superoxide dismutase (MnSOD) provides protection against AZT- or 3TC-induced endothelial dysfunction.
    Glover M; Hebert VY; Nichols K; Xue SY; Thibeaux TM; Zavecz JA; Dugas TR
    Antiviral Res; 2014 Nov; 111():136-42. PubMed ID: 25260898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress.
    Mukohda M; Stump M; Ketsawatsomkron P; Hu C; Quelle FW; Sigmund CD
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H39-48. PubMed ID: 26566726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.
    Zarzuelo MJ; López-Sepúlveda R; Sánchez M; Romero M; Gómez-Guzmán M; Ungvary Z; Pérez-Vizcaíno F; Jiménez R; Duarte J
    Biochem Pharmacol; 2013 May; 85(9):1288-96. PubMed ID: 23422569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models.
    Kröller-Schön S; Steven S; Kossmann S; Scholz A; Daub S; Oelze M; Xia N; Hausding M; Mikhed Y; Zinssius E; Mader M; Stamm P; Treiber N; Scharffetter-Kochanek K; Li H; Schulz E; Wenzel P; Münzel T; Daiber A
    Antioxid Redox Signal; 2014 Jan; 20(2):247-66. PubMed ID: 23845067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin ameliorates arterial dysfunction and oxidative stress with aging.
    Fleenor BS; Sindler AL; Marvi NK; Howell KL; Zigler ML; Yoshizawa M; Seals DR
    Exp Gerontol; 2013 Feb; 48(2):269-76. PubMed ID: 23142245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylate treatment improves age-associated vascular endothelial dysfunction: potential role of nuclear factor kappaB and forkhead Box O phosphorylation.
    Lesniewski LA; Durrant JR; Connell ML; Folian BJ; Donato AJ; Seals DR
    J Gerontol A Biol Sci Med Sci; 2011 Apr; 66(4):409-18. PubMed ID: 21303813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice.
    Gano LB; Donato AJ; Pasha HM; Hearon CM; Sindler AL; Seals DR
    Am J Physiol Heart Circ Physiol; 2014 Dec; 307(12):H1754-63. PubMed ID: 25326534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(-/-) mice.
    Buday A; Orsy P; Godó M; Mózes M; Kökény G; Lacza Z; Koller A; Ungvári Z; Gross ML; Benyó Z; Hamar P
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H386-95. PubMed ID: 20511416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transfer of manganese superoxide dismutase reverses vascular dysfunction in the absence but not in the presence of atherosclerotic plaque.
    Zanetti M; Sato J; Jost CJ; Gloviczki P; Katusic ZS; O'Brien T
    Hum Gene Ther; 2001 Jul; 12(11):1407-16. PubMed ID: 11485632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.