These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 23997427)
1. Size and crystallinity in protein-templated inorganic nanoparticles. Jolley CC; Uchida M; Reichhardt C; Harrington R; Kang S; Klem MT; Parise JB; Douglas T Chem Mater; 2010 Aug; 22(16):4612-4618. PubMed ID: 23997427 [TBL] [Abstract][Full Text] [Related]
2. The Crystal Structure of a Maxi/Mini-Ferritin Chimera Reveals Guiding Principles for the Assembly of Protein Cages. Cornell TA; Srivastava Y; Jauch R; Fan R; Orner BP Biochemistry; 2017 Aug; 56(30):3894-3899. PubMed ID: 28682051 [TBL] [Abstract][Full Text] [Related]
3. Crystalline Biohybrid Materials Based on Protein Cages. Böhler H; Rütten M; Lang L; Beck T Methods Mol Biol; 2023; 2671():361-386. PubMed ID: 37308656 [TBL] [Abstract][Full Text] [Related]
4. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses. Kasyutich O; Ilari A; Fiorillo A; Tatchev D; Hoell A; Ceci P J Am Chem Soc; 2010 Mar; 132(10):3621-7. PubMed ID: 20170158 [TBL] [Abstract][Full Text] [Related]
5. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages. Theil EC; Tosha T; Behera RK Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423 [TBL] [Abstract][Full Text] [Related]
6. Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles. Peng T; Paramelle D; Sana B; Lee CF; Lim S Small; 2014 Aug; 10(15):3131-8. PubMed ID: 24788938 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic Self-Assembly of Protein Cage Arrays. Chakraborti S; Korpi A; Heddle JG; Kostiainen MA Methods Mol Biol; 2021; 2208():123-133. PubMed ID: 32856259 [TBL] [Abstract][Full Text] [Related]
8. Use of protein cages as a template for confined synthesis of inorganic and organic nanoparticles. Uchida M; Qazi S; Edwards E; Douglas T Methods Mol Biol; 2015; 1252():17-25. PubMed ID: 25358769 [TBL] [Abstract][Full Text] [Related]
9. Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Maity B; Abe S; Ueno T Nat Commun; 2017 Mar; 8():14820. PubMed ID: 28300064 [TBL] [Abstract][Full Text] [Related]
10. Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin. Liu G; Debnath S; Paul KW; Han W; Hausner DB; Hosein HA; Michel FM; Parise JB; Sparks DL; Strongin DR Langmuir; 2006 Oct; 22(22):9313-21. PubMed ID: 17042547 [TBL] [Abstract][Full Text] [Related]
11. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization. Behera RK; Torres R; Tosha T; Bradley JM; Goulding CW; Theil EC J Biol Inorg Chem; 2015 Sep; 20(6):957-69. PubMed ID: 26202907 [TBL] [Abstract][Full Text] [Related]
12. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. Haldar S; Bevers LE; Tosha T; Theil EC J Biol Chem; 2011 Jul; 286(29):25620-7. PubMed ID: 21592958 [TBL] [Abstract][Full Text] [Related]
13. Increasing the Magnetic Anisotropy of a Natural System: Co-Doped Magnetite Mineralized in Ferritin Shells. Fantechi E; Innocenti C; Ferretti AM; Falvo E; Ceci P; Pineider F; Sangregorio C J Nanosci Nanotechnol; 2019 Aug; 19(8):4964-4973. PubMed ID: 30913808 [TBL] [Abstract][Full Text] [Related]
14. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid. Attama AA; Müller-Goymann CC Int J Pharm; 2007 Apr; 334(1-2):179-89. PubMed ID: 17140752 [TBL] [Abstract][Full Text] [Related]
15. Medium throughput cage state stability screen of conditions for the generation of gold nanoparticles encapsulated within a mini-ferritin. Cornell TA; Orner BP Bioorg Med Chem; 2018 Oct; 26(19):5253-5258. PubMed ID: 29615283 [TBL] [Abstract][Full Text] [Related]
16. Reactivity of ferritin and the structure of ferritin-derived ferrihydrite. Michel FM; Hosein HA; Hausner DB; Debnath S; Parise JB; Strongin DR Biochim Biophys Acta; 2010 Aug; 1800(8):871-85. PubMed ID: 20510340 [TBL] [Abstract][Full Text] [Related]
17. A library of protein cage architectures as nanomaterials. Flenniken ML; Uchida M; Liepold LO; Kang S; Young MJ; Douglas T Curr Top Microbiol Immunol; 2009; 327():71-93. PubMed ID: 19198571 [TBL] [Abstract][Full Text] [Related]
18. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Rother M; Nussbaumer MG; Renggli K; Bruns N Chem Soc Rev; 2016 Nov; 45(22):6213-6249. PubMed ID: 27426103 [TBL] [Abstract][Full Text] [Related]
19. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Uchida M; Flenniken ML; Allen M; Willits DA; Crowley BE; Brumfield S; Willis AF; Jackiw L; Jutila M; Young MJ; Douglas T J Am Chem Soc; 2006 Dec; 128(51):16626-33. PubMed ID: 17177411 [TBL] [Abstract][Full Text] [Related]
20. Probing the Nanostructure and Arrangement of Bacterial Magnetosomes by Small-Angle X-Ray Scattering. Rosenfeldt S; Riese CN; Mickoleit F; Schüler D; Schenk AS Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]