These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Undersampled MR Image Reconstruction with Data-Driven Tight Frame. Liu J; Wang S; Peng X; Liang D Comput Math Methods Med; 2015; 2015():424087. PubMed ID: 26199641 [TBL] [Abstract][Full Text] [Related]
6. Adaptive fixed-point iterative shrinkage/thresholding algorithm for MR imaging reconstruction using compressed sensing. Wu G; Luo S Magn Reson Imaging; 2014 May; 32(4):372-8. PubMed ID: 24512794 [TBL] [Abstract][Full Text] [Related]
7. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating. Liu Q; Wang S; Yang K; Luo J; Zhu Y; Liang D IEEE Trans Med Imaging; 2013 Jul; 32(7):1290-301. PubMed ID: 23559032 [TBL] [Abstract][Full Text] [Related]
8. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. Yang B; Yuan M; Ma Y; Zhang J; Zhan K BMC Med Imaging; 2015 Aug; 15():28. PubMed ID: 26253135 [TBL] [Abstract][Full Text] [Related]
9. Regularized sensitivity encoding (SENSE) reconstruction using Bregman iterations. Liu B; King K; Steckner M; Xie J; Sheng J; Ying L Magn Reson Med; 2009 Jan; 61(1):145-52. PubMed ID: 19097223 [TBL] [Abstract][Full Text] [Related]
11. Smoothly clipped absolute deviation (SCAD) regularization for compressed sensing MRI using an augmented Lagrangian scheme. Mehranian A; Rad HS; Rahmim A; Ay MR; Zaidi H Magn Reson Imaging; 2013 Oct; 31(8):1399-411. PubMed ID: 23891179 [TBL] [Abstract][Full Text] [Related]
12. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction. Wang W; Cao N Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107 [TBL] [Abstract][Full Text] [Related]
13. Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods. Ramani S; Liu Z; Rosen J; Nielsen JF; Fessler JA IEEE Trans Image Process; 2012 Aug; 21(8):3659-72. PubMed ID: 22531764 [TBL] [Abstract][Full Text] [Related]
14. Compressively sampled magnetic resonance imaging reconstruction based on split Bregman iteration with general non-uniform threshold shrinkage. Wang W; Cao D; Li X; Cao N Magn Reson Imaging; 2022 Jan; 85():297-307. PubMed ID: 34666160 [TBL] [Abstract][Full Text] [Related]
15. SENSE reconstruction with nonlocal TV regularization. Liang D; Wang H; Ying L Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1032-5. PubMed ID: 19965132 [TBL] [Abstract][Full Text] [Related]
16. Compressed sensing MR image reconstruction exploiting TGV and wavelet sparsity. Zhao D; Du H; Han Y; Mei W Comput Math Methods Med; 2014; 2014():958671. PubMed ID: 25371704 [TBL] [Abstract][Full Text] [Related]
17. Undersampled MRI reconstruction with patch-based directional wavelets. Qu X; Guo D; Ning B; Hou Y; Lin Y; Cai S; Chen Z Magn Reson Imaging; 2012 Sep; 30(7):964-77. PubMed ID: 22504040 [TBL] [Abstract][Full Text] [Related]
18. Improved least squares MR image reconstruction using estimates of k-space data consistency. Johnson KM; Block WF; Reeder SB; Samsonov A Magn Reson Med; 2012 Jun; 67(6):1600-8. PubMed ID: 22135155 [TBL] [Abstract][Full Text] [Related]
20. Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging. Wang S; Liu J; Peng X; Dong P; Liu Q; Liang D Biomed Res Int; 2016; 2016():2860643. PubMed ID: 27747226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]