BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23997842)

  • 1. A Post-synthetic Modification of II-VI Nanoparticles to Create Tb
    Mukherjee P; Sloan RF; Shade CM; Waldeck DH; Petoud S
    J Phys Chem C Nanomater Interfaces; 2013 Jul; 117(27):14451-14460. PubMed ID: 23997842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host sensitized lanthanide photoluminescence from post-synthetically modified semiconductor nanoparticles depends on reactant identity.
    Debnath GH; Rudra S; Bhattacharyya A; Guchhait N; Mukherjee P
    J Colloid Interface Sci; 2019 Mar; 540():448-465. PubMed ID: 30665169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles.
    Mukherjee P; Shade CM; Yingling AM; Lamont DN; Waldeck DH; Petoud S
    J Phys Chem A; 2011 Apr; 115(16):4031-41. PubMed ID: 21090795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of reactant concentration and identity of added cation in controlling emission from post-synthetically modified terbium incorporated zinc sulfide nanoparticles: an avenue for the detection of lead(ii) cations.
    Rudra S; Debnath GH; Mukherjee P
    RSC Adv; 2018 May; 8(32):18093-18108. PubMed ID: 35542071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnS Nanoparticles Sensitize Luminescence of Capping-Ligand-Bound Lanthanide Ions.
    Tigaa RA; Lucas GJ; de Bettencourt-Dias A
    Inorg Chem; 2017 Mar; 56(6):3260-3268. PubMed ID: 28240868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature doping of Ln
    Debnath GH; Bloom BP; Tan S; Waldeck DH
    Nanoscale; 2022 Apr; 14(16):6037-6051. PubMed ID: 35383344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Is Beyond Charge Trapping in Semiconductor Nanoparticle Sensitized Dopant Photoluminescence?
    Manna P; Debnath GH; Waldeck DH; Mukherjee P
    J Phys Chem Lett; 2018 Nov; 9(21):6191-6197. PubMed ID: 30380893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Intercalating Near-Infrared Luminescent Lanthanide Complexes Containing Dipyrido[3,2-
    Savić A; Kaczmarek AM; Van Deun R; Van Hecke K
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33203056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains.
    Chow CY; Eliseeva SV; Trivedi ER; Nguyen TN; Kampf JW; Petoud S; Pecoraro VL
    J Am Chem Soc; 2016 Apr; 138(15):5100-9. PubMed ID: 27015360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry.
    Farger P; Leuvrey C; Gallart M; Gilliot P; Rogez G; Rocha J; Ananias D; Rabu P; Delahaye E
    Beilstein J Nanotechnol; 2018; 9():2775-2787. PubMed ID: 30498650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of lanthanide (Eu(3+)) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study.
    Wang Y; Liang X; Liu E; Hu X; Fan J
    Nanotechnology; 2015 Sep; 26(37):375601. PubMed ID: 26303203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-Sensitized Lanthanide Nanocrystals: Merging Solid-State Photophysics and Molecular Solution Chemistry.
    Agbo P; Abergel RJ
    Inorg Chem; 2016 Oct; 55(20):9973-9980. PubMed ID: 27362470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-source solid-precursor method for making eco-friendly doped semiconductor nanoparticles emitting multi-color luminescence.
    Manzoor K; Aditya V; Vadera SR; Kumar N; Kutty TR
    J Nanosci Nanotechnol; 2007 Feb; 7(2):463-73. PubMed ID: 17450780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy to Enhance the Luminescence of Lanthanide Ions Doped MgWO
    Huang J; Lu W; Wang J; Li Q; Tian B; Li C; Wang Z; Jin L; Hao J
    Inorg Chem; 2018 Jul; 57(14):8662-8672. PubMed ID: 29939723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination polymer nanoparticles from nucleotide and lanthanide ions as a versatile platform for color-tunable luminescence and integrating Boolean logic operations.
    Gao RR; Shi S; Li YJ; Wumaier M; Hu XC; Yao TM
    Nanoscale; 2017 Jul; 9(27):9589-9597. PubMed ID: 28665422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel strategy to enhance the luminescence performance of NaGdF4:Ln(3+) nanocrystals.
    Song Y; Shao B; Feng Y; Lü W; Liu G; You H
    Dalton Trans; 2016 Jun; 45(23):9468-76. PubMed ID: 27188853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence of Visible and NIR-Emitting Lanthanide-Doped Bismuth-Organic Materials.
    Batrice RJ; Ayscue RL; Adcock AK; Sullivan BR; Han SY; Piccoli PM; Bertke JA; Knope KE
    Chemistry; 2018 Apr; 24(21):5630-5636. PubMed ID: 29359514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification.
    Stouwdam JW; van Veggel FC
    Langmuir; 2004 Dec; 20(26):11763-71. PubMed ID: 15595809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide Luminescence Enhancement of Core-Shell Magnetite-SiO
    Goderski S; Kanno S; Yoshihara K; Komiya H; Goto K; Tanaka T; Kawaguchi S; Ishii A; Shimoyama JI; Hasegawa M; Lis S
    ACS Omega; 2020 Dec; 5(51):32930-32938. PubMed ID: 33403254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.