These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23998271)

  • 1. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research.
    Wei W; Shin YS; Ma C; Wang J; Elitas M; Fan R; Heath JR
    Genome Med; 2013; 5(8):75. PubMed ID: 23998271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip-based single-cell functional proteomics for biomedical applications.
    Lu Y; Yang L; Wei W; Shi Q
    Lab Chip; 2017 Mar; 17(7):1250-1263. PubMed ID: 28280819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.
    Yu J; Zhou J; Sutherland A; Wei W; Shin YS; Xue M; Heath JR
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():275-95. PubMed ID: 24896308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell Omics Analyses Enabled by Microchip Technologies.
    Deng Y; Finck A; Fan R
    Annu Rev Biomed Eng; 2019 Jun; 21():365-393. PubMed ID: 30883211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Utility of Liquid Diagnostic Platforms in Non-Small Cell Lung Cancer.
    Levy B; Hu ZI; Cordova KN; Close S; Lee K; Becker D
    Oncologist; 2016 Sep; 21(9):1121-30. PubMed ID: 27388233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics.
    Merrick BA; London RE; Bushel PR; Grissom SF; Paules RS
    IARC Sci Publ; 2011; (163):121-42. PubMed ID: 22997859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for Peptidomics, Proteomics, and Cell Analysis.
    Vitorino R; Guedes S; Costa JPD; Kašička V
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomics and its applications for systems biology.
    Ivakhno S; Kornelyuk A
    Biochemistry (Mosc); 2006 Oct; 71(10):1060-72. PubMed ID: 17125453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome signatures--how are they obtained and what do they teach us?
    da Costa JP; Carvalhais V; Ferreira R; Amado F; Vilanova M; Cerca N; Vitorino R
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7417-31. PubMed ID: 26205520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex microsphere-based flow cytometric platforms for protein analysis and their application in clinical proteomics - from assays to results.
    Hsu HY; Joos TO; Koga H
    Electrophoresis; 2009 Dec; 30(23):4008-19. PubMed ID: 19960465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell functional proteomics for assessing immune response in cancer therapy: technology, methods, and applications.
    Ma C; Fan R; Elitas M
    Front Oncol; 2013; 3():133. PubMed ID: 23755371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization.
    Chen W; Huang NT; Li X; Yu ZT; Kurabayashi K; Fu J
    Front Oncol; 2013; 3():98. PubMed ID: 23626950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.
    Woo J; Han D; Wang JI; Park J; Kim H; Kim Y
    J Proteome Res; 2017 Sep; 16(9):3419-3432. PubMed ID: 28777000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhosphoBlast, a computational tool for comparing phosphoprotein signatures among large datasets.
    Wang Y; Klemke RL
    Mol Cell Proteomics; 2008 Jan; 7(1):145-62. PubMed ID: 17934212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging single-cell technologies for functional proteomics in oncology.
    Wang J; Yang F
    Expert Rev Proteomics; 2016 Sep; 13(9):805-15. PubMed ID: 27441788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy.
    Calvo KR; Liotta LA; Petricoin EF
    Biosci Rep; 2005; 25(1-2):107-25. PubMed ID: 16222423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Microchip-Based Tools Facilitating Live Cell Imaging and Assessment of Functional Heterogeneity within NK Cell Populations.
    Forslund E; Guldevall K; Olofsson PE; Frisk T; Christakou AE; Wiklund M; Onfelt B
    Front Immunol; 2012; 3():300. PubMed ID: 23060879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching complexity: systems biology and ms-based techniques to address immune signaling.
    Gillen J; Bridgwater C; Nita-Lazar A
    Expert Rev Proteomics; 2020 May; 17(5):341-354. PubMed ID: 32552048
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.