These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 23998335)
1. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H; Zhang L; Chen G J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335 [TBL] [Abstract][Full Text] [Related]
2. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping. Fan H; Yao F; Xu S; Chen G Talanta; 2013 Dec; 117():119-26. PubMed ID: 24209319 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Bao H; Chen Q; Zhang L; Chen G Analyst; 2011 Dec; 136(24):5190-6. PubMed ID: 22013584 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H; Bao H; Zhang L; Chen G Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T; Wang S; Chen G Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis. Xu G; Chen X; Hu J; Yang P; Yang D; Wei L Analyst; 2012 Jun; 137(12):2757-61. PubMed ID: 22575850 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis. Ge H; Bao H; Zhang L; Chen G Anal Chim Acta; 2014 Oct; 845():77-84. PubMed ID: 25201275 [TBL] [Abstract][Full Text] [Related]
8. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380 [TBL] [Abstract][Full Text] [Related]
9. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis. Chen Q; Bao H; Zhang L; Chen G Electrophoresis; 2016 Feb; 37(3):493-7. PubMed ID: 26389537 [TBL] [Abstract][Full Text] [Related]
10. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. Zhang P; Gao M; Zhu S; Lei J; Zhang X J Chromatogr A; 2011 Nov; 1218(47):8567-71. PubMed ID: 22024345 [TBL] [Abstract][Full Text] [Related]
11. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H; Lui T; Zhang L; Chen G Proteomics; 2009 Feb; 9(4):1114-7. PubMed ID: 19180540 [TBL] [Abstract][Full Text] [Related]
12. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077 [TBL] [Abstract][Full Text] [Related]
13. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis. Liu T; Bao H; Chen G Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916 [TBL] [Abstract][Full Text] [Related]
14. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis. Jiao J; Miao A; Zhang X; Cai Y; Lu Y; Zhang Y; Lu H Analyst; 2013 Mar; 138(6):1645-8. PubMed ID: 23364134 [TBL] [Abstract][Full Text] [Related]
15. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis. Liu T; Bao H; Zhang L; Chen G Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354 [TBL] [Abstract][Full Text] [Related]
16. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Li Y; Yan B; Deng C; Yu W; Xu X; Yang P; Zhang X Proteomics; 2007 Jul; 7(14):2330-9. PubMed ID: 17570518 [TBL] [Abstract][Full Text] [Related]
17. A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lee J; Soper SA; Murray KK Rapid Commun Mass Spectrom; 2011 Mar; 25(6):693-9. PubMed ID: 21337630 [TBL] [Abstract][Full Text] [Related]
18. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225 [TBL] [Abstract][Full Text] [Related]
19. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Ma J; Liang Z; Qiao X; Deng Q; Tao D; Zhang L; Zhang Y Anal Chem; 2008 Apr; 80(8):2949-56. PubMed ID: 18333626 [TBL] [Abstract][Full Text] [Related]
20. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S; Chen Z; Yang P; Chen G Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]