These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 23998440)
1. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440 [TBL] [Abstract][Full Text] [Related]
2. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
3. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
4. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
5. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364 [TBL] [Abstract][Full Text] [Related]
6. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Pham QP; Sharma U; Mikos AG Biomacromolecules; 2006 Oct; 7(10):2796-805. PubMed ID: 17025355 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
8. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
9. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
10. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Yin A; Li J; Bowlin GL; Li D; Rodriguez IA; Wang J; Wu T; Ei-Hamshary HA; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2014 Aug; 120():47-54. PubMed ID: 24905678 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513 [TBL] [Abstract][Full Text] [Related]
13. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Farrugia BL; Brown TD; Upton Z; Hutmacher DW; Dalton PD; Dargaville TR Biofabrication; 2013 Jun; 5(2):025001. PubMed ID: 23443534 [TBL] [Abstract][Full Text] [Related]
14. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
15. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related]
16. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
17. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294 [TBL] [Abstract][Full Text] [Related]
18. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
20. Identification of sagging in melt-electrospinning of microfiber scaffolds. Nguyen NT; Kim JH; Jeong YH Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109785. PubMed ID: 31349447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]