These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23998479)

  • 1. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles.
    Cooper JT; Peterson EM; Harris JM
    Anal Chem; 2013 Oct; 85(19):9363-70. PubMed ID: 23998479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.
    Cooper J; Harris JM
    Anal Chem; 2014 Dec; 86(23):11766-72. PubMed ID: 25356685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1.1 μm superficially porous particles for liquid chromatography. Part I: synthesis and particle structure characterization.
    Blue LE; Jorgenson JW
    J Chromatogr A; 2011 Nov; 1218(44):7989-95. PubMed ID: 21939979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulation studies of reversed-phase liquid chromatography.
    Lindsey RK; Rafferty JL; Eggimann BL; Siepmann JI; Schure MR
    J Chromatogr A; 2013 Apr; 1287():60-82. PubMed ID: 23489490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases.
    Lesellier E
    J Chromatogr A; 2012 Nov; 1266():34-42. PubMed ID: 23116802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule insights into retention at a reversed-phase chromatographic interface.
    Mabry JN; Skaug MJ; Schwartz DK
    Anal Chem; 2014 Oct; 86(19):9451-8. PubMed ID: 25188676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic origins of band broadening in chromatography. Polarity distribution in C(18) stationary phase probed by confocal ratiometric imaging of Nile red.
    Zhong Z; Geng ML
    Anal Chem; 2007 Sep; 79(17):6709-17. PubMed ID: 17663533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development.
    Abrahim A; Al-Sayah M; Skrdla P; Bereznitski Y; Chen Y; Wu N
    J Pharm Biomed Anal; 2010 Jan; 51(1):131-7. PubMed ID: 19758782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging fluorescence-correlation spectroscopy for measuring fast surface diffusion at liquid/solid interfaces.
    Cooper JT; Harris JM
    Anal Chem; 2014 Aug; 86(15):7618-26. PubMed ID: 24975169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fluorescence of thioflavin T confined in mesoporous silica xerogels.
    D'Amico M; Schirò G; Cupane A; D'Alfonso L; Leone M; Militello V; Vetri V
    Langmuir; 2013 Aug; 29(32):10238-46. PubMed ID: 23844566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.
    Kennard R; DeSisto WJ; Giririjan TP; Mason MD
    J Chem Phys; 2008 Apr; 128(13):134710. PubMed ID: 18397097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An appraisal of the chemical and thermal stability of silica based reversed-phase liquid chromatographic stationary phases employed within the pharmaceutical environment.
    Borges EM; Euerby MR
    J Pharm Biomed Anal; 2013 Apr; 77():100-15. PubMed ID: 23411003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS.
    Shen Y; Smith RD; Unger KK; Kumar D; Lubda D
    Anal Chem; 2005 Oct; 77(20):6692-701. PubMed ID: 16223258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entrapment of individual DNA molecules and nanoparticles in porous alumina membranes.
    Ma C; Yeung ES
    Anal Chem; 2010 Jan; 82(2):654-7. PubMed ID: 20014757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size analyses of porous silica and hybrid silica chromatographic support particles. Comparison of flow/hyperlayer field-flow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering.
    Xu Y
    J Chromatogr A; 2008 May; 1191(1-2):40-56. PubMed ID: 18272159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic optimisation of the reversed phase liquid chromatographic separation of proanthocyanidins on sub-2 μm and superficially porous phases.
    Kalili KM; Cabooter D; Desmet G; de Villiers A
    J Chromatogr A; 2012 May; 1236():63-76. PubMed ID: 22444426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins.
    Jandera P; Kučerová Z; Urban J
    J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.
    Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S
    J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing enantioselective ultrahigh-pressure liquid chromatography (eUHPLC): theoretical inspections and ultrafast separations on a new sub-2-μm Whelk-O1 stationary phase.
    Kotoni D; Ciogli A; Molinaro C; D'Acquarica I; Kocergin J; Szczerba T; Ritchie H; Villani C; Gasparrini F
    Anal Chem; 2012 Aug; 84(15):6805-13. PubMed ID: 22725676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.