These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 23998754)
1. Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Davies BM; Morrey ME; Mouthuy PA; Baboldashti NZ; Hakimi O; Snelling S; Price A; Carr A Regen Med; 2013 Sep; 8(5):613-30. PubMed ID: 23998754 [TBL] [Abstract][Full Text] [Related]
2. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. Martinello T; Bronzini I; Volpin A; Vindigni V; Maccatrozzo L; Caporale G; Bassetto F; Patruno M J Tissue Eng Regen Med; 2014 Aug; 8(8):612-9. PubMed ID: 22711488 [TBL] [Abstract][Full Text] [Related]
3. Directed Differentiation and Paracrine Mechanisms of Mesenchymal Stem Cells: Potential Implications for Tendon Repair and Regeneration. Zhang B; Luo Q; Halim A; Ju Y; Morita Y; Song G Curr Stem Cell Res Ther; 2017; 12(6):447-454. PubMed ID: 28464787 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Leong DJ; Sun HB Ann N Y Acad Sci; 2016 Nov; 1383(1):88-96. PubMed ID: 27706825 [TBL] [Abstract][Full Text] [Related]
5. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Teh TK; Toh SL; Goh JC Tissue Eng Part A; 2013 Jun; 19(11-12):1360-72. PubMed ID: 23327653 [TBL] [Abstract][Full Text] [Related]
6. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108 [TBL] [Abstract][Full Text] [Related]
7. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Chen X; Song XH; Yin Z; Zou XH; Wang LL; Hu H; Cao T; Zheng M; Ouyang HW Stem Cells; 2009 Jun; 27(6):1276-87. PubMed ID: 19489094 [TBL] [Abstract][Full Text] [Related]
8. Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Lange-Consiglio A; Tassan S; Corradetti B; Meucci A; Perego R; Bizzaro D; Cremonesi F Cytotherapy; 2013 Aug; 15(8):1011-20. PubMed ID: 23602577 [TBL] [Abstract][Full Text] [Related]
9. Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: a clinical report. Renzi S; Riccò S; Dotti S; Sesso L; Grolli S; Cornali M; Carlin S; Patruno M; Cinotti S; Ferrari M Res Vet Sci; 2013 Aug; 95(1):272-7. PubMed ID: 23419936 [TBL] [Abstract][Full Text] [Related]
10. Repairing sciatic nerve injury with an EPO-loaded nerve conduit and sandwiched-in strategy of transplanting mesenchymal stem cells. Zhang W; Zhang L; Liu J; Zhang L; Zhang J; Tang P Biomaterials; 2017 Oct; 142():90-100. PubMed ID: 28732247 [TBL] [Abstract][Full Text] [Related]
11. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
12. Exploring the application of mesenchymal stem cells in bone repair and regeneration. Griffin M; Iqbal SA; Bayat A J Bone Joint Surg Br; 2011 Apr; 93(4):427-34. PubMed ID: 21464477 [TBL] [Abstract][Full Text] [Related]
13. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Zeng X; Zeng YS; Ma YH; Lu LY; Du BL; Zhang W; Li Y; Chan WY Cell Transplant; 2011; 20(11-12):1881-99. PubMed ID: 21396163 [TBL] [Abstract][Full Text] [Related]
14. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. Huang S; Lu G; Wu Y; Jirigala E; Xu Y; Ma K; Fu X J Dermatol Sci; 2012 Apr; 66(1):29-36. PubMed ID: 22398148 [TBL] [Abstract][Full Text] [Related]
15. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
16. Hardly Tendentious--Repairing Like with Like. Prockop DJ N Engl J Med; 2015 Oct; 373(14):1371-2. PubMed ID: 26422728 [No Abstract] [Full Text] [Related]
17. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Huang YC; Leung VY; Lu WW; Luk KD Spine J; 2013 Mar; 13(3):352-62. PubMed ID: 23340343 [TBL] [Abstract][Full Text] [Related]
18. The role of bone marrow derived mesenchymal stem cells in sports injuries. Tucker BA; Karamsadkar SS; Khan WS; Pastides P J Stem Cells; 2010; 5(4):155-66. PubMed ID: 22314864 [TBL] [Abstract][Full Text] [Related]
19. Isolation of mesenchymal stem cells from shoulder rotator cuff: a potential source for muscle and tendon repair. Tsai CC; Huang TF; Ma HL; Chiang ER; Hung SC Cell Transplant; 2013; 22(3):413-22. PubMed ID: 23006509 [TBL] [Abstract][Full Text] [Related]
20. Mesenchymal stem cells for cartilage engineering. Huselstein C; Li Y; He X Biomed Mater Eng; 2012; 22(1-3):69-80. PubMed ID: 22766704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]