BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 23999072)

  • 1. Solid anthropomorphic infant whole-body DXA phantom: design, evaluation, and multisite testing.
    Shypailo RJ; Ellis KJ
    Pediatr Res; 2013 Nov; 74(5):486-93. PubMed ID: 23999072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.
    Krueger D; Libber J; Sanfilippo J; Yu HJ; Horvath B; Miller CG; Binkley N
    J Clin Densitom; 2016; 19(2):220-5. PubMed ID: 26071169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Between-centre variability versus variability over time in DXA whole body measurements evaluated using a whole body phantom.
    Louis O; Verlinde S; Thomas M; De Schepper J
    Eur J Radiol; 2006 Jun; 58(3):431-4. PubMed ID: 16513312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body composition analysis by dual X-ray absorptiometry: in vivo and in vitro comparison of three different fan-beam instruments.
    Aasen G; Fagertun H; Halse J
    Scand J Clin Lab Invest; 2006; 66(8):659-66. PubMed ID: 17101558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DXA body composition corrective factors between Hologic Discovery models to conduct multicenter studies.
    Sutter T; Duboeuf F; Chapurlat R; Cortet B; Lespessailles E; Roux JP
    Bone; 2021 Jan; 142():115683. PubMed ID: 33045389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of body composition measurements obtained by two fan-beam DXA instruments.
    Sakai Y; Ito H; Meno T; Numata M; Jingu S
    J Clin Densitom; 2006; 9(2):191-7. PubMed ID: 16785080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross calibration of Hologic QDR2000 and GE lunar prodigy for whole body bone mineral density and body composition measurements.
    Pearson D; Horton B; Green DJ
    J Clin Densitom; 2011; 14(3):294-301. PubMed ID: 21600823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of dual energy X-ray absorptiometry (DXA) by comparison with chemical analysis of dogs and cats.
    Speakman JR; Booles D; Butterwick R
    Int J Obes Relat Metab Disord; 2001 Mar; 25(3):439-47. PubMed ID: 11319644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phantoms for cross-calibration of dual energy X-ray absorptiometry measurements in infants.
    Hammami M; Picaud JC; Fusch C; Hockman EM; Rigo J; Koo WW
    J Am Coll Nutr; 2002 Aug; 21(4):328-32. PubMed ID: 12166529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.
    Brunton JA; Weiler HA; Atkinson SA
    Pediatr Res; 1997 Apr; 41(4 Pt 1):590-6. PubMed ID: 9098865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone mineral and body composition measurements: cross-calibration of pencil-beam and fan-beam dual-energy X-ray absorptiometers.
    Ellis KJ; Shypailo RJ
    J Bone Miner Res; 1998 Oct; 13(10):1613-8. PubMed ID: 9783550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers and other techniques used for whole-body soft tissue measurements.
    Tothill P; Avenell A; Love J; Reid DM
    Eur J Clin Nutr; 1994 Nov; 48(11):781-94. PubMed ID: 7859696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do Textiles Impact DXA Bone Density or Body Composition Results?
    Siglinsky E; Binkley N; Krueger D
    J Clin Densitom; 2018; 21(2):303-307. PubMed ID: 28988694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body composition in taller individuals using DXA: A validation study for athletic and non-athletic populations.
    Santos DA; Gobbo LA; Matias CN; Petroski EL; Gonçalves EM; Cyrino ES; Minderico CS; Sardinha LB; Silva AM
    J Sports Sci; 2013; 31(4):405-13. PubMed ID: 23092580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First all-solid pediatric phantom for dual X-ray absorptiometry measurements in infants.
    Picaud JC; Duboeuf F; Vey-Marty V; Delams P; Claris O; Salle BL; Rigo J
    J Clin Densitom; 2003; 6(1):17-23. PubMed ID: 12665698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical considerations of dual-energy X-ray absorptiometry-based bone mineral measurements for pediatric studies.
    Koo WW; Walters J; Bush AJ
    J Bone Miner Res; 1995 Dec; 10(12):1998-2004. PubMed ID: 8619381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation.
    Bolotin HH; Sievänen H; Grashuis JL; Kuiper JW; Järvinen TL
    J Bone Miner Res; 2001 Feb; 16(2):417-26. PubMed ID: 11204442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons between fat measurements by dual-energy X-ray absorptiometry, underwater weighing and magnetic resonance imaging in healthy women.
    Tothill P; Han TS; Avenell A; McNeill G; Reid DM
    Eur J Clin Nutr; 1996 Nov; 50(11):747-52. PubMed ID: 8933122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices.
    Diessel E; Fuerst T; Njeh CF; Tylavsky F; Cauley J; Dockrell M; Genant HK
    J Appl Physiol (1985); 2000 Aug; 89(2):599-605. PubMed ID: 10926643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions.
    Bolotin HH; Sievänen H; Grashuis JL
    J Bone Miner Res; 2003 Jun; 18(6):1020-7. PubMed ID: 12817754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.