BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23999074)

  • 1. Compensatory renal growth after unilateral or subtotal nephrectomy in the ovine fetus.
    Sammut S; Behr L; Hekmati M; Gubler MC; Laborde K; Lelièvre Pégorier M
    Pediatr Res; 2013 Dec; 74(6):624-32. PubMed ID: 23999074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory renal growth after unilateral nephrectomy in the ovine fetus.
    Douglas-Denton R; Moritz KM; Bertram JF; Wintour EM
    J Am Soc Nephrol; 2002 Feb; 13(2):406-410. PubMed ID: 11805169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory renal growth post fetal nephrectomy in the rabbit.
    Abellan MC; Chehade A; Grignon Y; Galloy MA; Fabre B; Schmitt M
    Eur J Pediatr Surg; 1997 Oct; 7(5):282-5. PubMed ID: 9402486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of normal development on compensatory renal growth.
    Larsson L; Aperia A; Wilton P
    Kidney Int; 1980 Jul; 18(1):29-35. PubMed ID: 7218658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of renal porphyrin handling in rats suffering from different kinds of chronic renal failure (CRF): uranyl nitrate (UN) induced fibrosis or 5/6-nephrectomy (5/6NX).
    Fleck C; Scholle T; Schwertfeger M; Appenroth D; Stein G
    Exp Toxicol Pathol; 2003 Jun; 54(5-6):393-9. PubMed ID: 12877351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal effects of oral maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats.
    Sebeková K; Hofmann T; Boor P; Sebeková K; Ulicná O; Erbersdobler HF; Baynes JW; Thorpe SR; Heidland A; Somoza V
    Ann N Y Acad Sci; 2005 Jun; 1043():482-91. PubMed ID: 16037270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent effects of unilateral and subtotal nephrectomy on insulin sensitivity in rats.
    Kato Y; Ohno Y; Hayashi M; Suzawa T; Shibagaki K; Sasaki T; Saruta T
    Ren Fail; 2005; 27(4):451-7. PubMed ID: 16060135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal function and morphometry in the dwarf rat following a reduction in renal mass.
    Haylor J; Chowdry J; Baillie H; Cope G; el Nahas AM
    Nephrol Dial Transplant; 1996 Apr; 11(4):643-50. PubMed ID: 8671852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory renal hypertrophy in fetal lambs.
    Moore ES; deLeon LB; Weiss LS; McMann BJ; Ocampo M
    Pediatr Res; 1979 Oct; 13(10):1125-8. PubMed ID: 503637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between maternal subtotal nephrectomy and salt: effects on renal function and the composition of plasma in the late gestation sheep fetus.
    Boyce AC; Gibson KJ; Thomson CL; Lumbers ER
    Exp Physiol; 2008 Feb; 93(2):262-70. PubMed ID: 17933860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory glomerular growth after unilateral nephrectomy is VEGF dependent.
    Flyvbjerg A; Schrijvers BF; De Vriese AS; Tilton RG; Rasch R
    Am J Physiol Endocrinol Metab; 2002 Aug; 283(2):E362-6. PubMed ID: 12110543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent characteristics of compensatory renal growth.
    Kaufman JM; Hardy R; Hayslett JP
    Kidney Int; 1975 Jul; 8(1):21-6. PubMed ID: 1160222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of a kidney during fetal life: long-term consequences and lessons learned.
    Lankadeva YR; Singh RR; Tare M; Moritz KM; Denton KM
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F791-800. PubMed ID: 24500691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a diet rich in advanced glycation end products in the rat remnant kidney model.
    Sebeková K; Faist V; Hofmann T; Schinzel R; Heidland A
    Am J Kidney Dis; 2003 Mar; 41(3 Suppl 1):S48-51. PubMed ID: 12612952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease.
    Tatematsu S; Wakino S; Kanda T; Homma K; Yoshioka K; Hasegawa K; Sugano N; Kimoto M; Saruta T; Hayashi K
    J Am Soc Nephrol; 2007 Mar; 18(3):741-9. PubMed ID: 17267746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced renal IGF-I expression following partial kidney infarction.
    Rogers SA; Miller SB; Hammerman MR
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F963-7. PubMed ID: 8322899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serum cystatin C in mouse models: a reliable and precise marker for renal function and superior to serum creatinine.
    Song S; Meyer M; Türk TR; Wilde B; Feldkamp T; Assert R; Wu K; Kribben A; Witzke O
    Nephrol Dial Transplant; 2009 Apr; 24(4):1157-61. PubMed ID: 19004848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal innervation is not required for compensatory renal growth in the rat.
    Gettes DR; Faber JE; Velandia NB
    J Auton Nerv Syst; 1986 Jun; 16(2):101-8. PubMed ID: 3722716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of renal "work" in compensatory kidney growth.
    Katz AI; Toback FG; Lindheimer MD
    Yale J Biol Med; 1978; 51(3):331-7. PubMed ID: 366925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nephron endowment and filtration surface area in the kidney after growth restriction of fetal sheep.
    Mitchell EK; Louey S; Cock ML; Harding R; Black MJ
    Pediatr Res; 2004 May; 55(5):769-73. PubMed ID: 14973179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.