BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1010 related articles for article (PubMed ID: 23999092)

  • 1. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.
    Jiang W; Zhou H; Bi H; Fromm M; Yang B; Weeks DP
    Nucleic Acids Res; 2013 Nov; 41(20):e188. PubMed ID: 23999092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cas9-based genome editing in Arabidopsis and tobacco.
    Li JF; Zhang D; Sheen J
    Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9-Derived Synthetic Gene Activator.
    Li Z; Wang F; Li JF
    Curr Protoc Mol Biol; 2019 Jun; 127(1):e89. PubMed ID: 31237422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System.
    Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F
    J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies.
    Sharma R; Liang Y; Lee MY; Pidatala VR; Mortimer JC; Scheller HV
    BMC Res Notes; 2020 Feb; 13(1):116. PubMed ID: 32103777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts.
    Petersen BL; Möller SR; Mravec J; Jørgensen B; Christensen M; Liu Y; Wandall HH; Bennett EP; Yang Z
    BMC Biotechnol; 2019 Jun; 19(1):36. PubMed ID: 31208390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted genome editing of sweet orange using Cas9/sgRNA.
    Jia H; Wang N
    PLoS One; 2014; 9(4):e93806. PubMed ID: 24710347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.
    Zhou H; Liu B; Weeks DP; Spalding MH; Yang B
    Nucleic Acids Res; 2014; 42(17):10903-14. PubMed ID: 25200087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 Mutagenesis by Translocation of Cas9 Protein Into Plant Cells via the
    Schmitz DJ; Ali Z; Wang C; Aljedaani F; Hooykaas PJJ; Mahfouz M; de Pater S
    Front Genome Ed; 2020; 2():6. PubMed ID: 34713215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration.
    Lin CS; Hsu CT; Yang LH; Lee LY; Fu JY; Cheng QW; Wu FH; Hsiao HC; Zhang Y; Zhang R; Chang WJ; Yu CT; Wang W; Liao LJ; Gelvin SB; Shih MC
    Plant Biotechnol J; 2018 Jul; 16(7):1295-1310. PubMed ID: 29230929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites.
    Zhang Q; Yin K; Liu G; Li S; Li M; Qiu JL
    Sci China Life Sci; 2020 Dec; 63(12):1918-1927. PubMed ID: 32382982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.
    Subburaj S; Chung SJ; Lee C; Ryu SM; Kim DH; Kim JS; Bae S; Lee GJ
    Plant Cell Rep; 2016 Jul; 35(7):1535-44. PubMed ID: 26825596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice.
    Xu R; Li H; Qin R; Wang L; Li L; Wei P; Yang J
    Rice (N Y); 2014; 7(1):5. PubMed ID: 24920971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.
    Mikami M; Toki S; Endo M
    Plant Mol Biol; 2015 Aug; 88(6):561-72. PubMed ID: 26188471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants.
    Luo M; Gilbert B; Ayliffe M
    Plant Cell Rep; 2016 Jul; 35(7):1439-50. PubMed ID: 27146973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.
    Woo JW; Kim J; Kwon SI; Corvalán C; Cho SW; Kim H; Kim SG; Kim ST; Choe S; Kim JS
    Nat Biotechnol; 2015 Nov; 33(11):1162-4. PubMed ID: 26479191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells.
    Permyakova NV; Sidorchuk YV; Marenkova TV; Khozeeva SA; Kuznetsov VV; Zagorskaya AA; Rozov SM; Deineko EV
    Mol Biol Rep; 2019 Dec; 46(6):5735-5743. PubMed ID: 31392536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.