These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23999097)

  • 1. Engineering modular 'ON' RNA switches using biological components.
    Ceres P; Trausch JJ; Batey RT
    Nucleic Acids Res; 2013 Dec; 41(22):10449-61. PubMed ID: 23999097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas.
    Mehrshahi P; Nguyen GTDT; Gorchs Rovira A; Sayer A; Llavero-Pasquina M; Lim Huei Sin M; Medcalf EJ; Mendoza-Ochoa GI; Scaife MA; Smith AG
    ACS Synth Biol; 2020 Jun; 9(6):1406-1417. PubMed ID: 32496044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
    Hoetzel J; Suess B
    J Mol Biol; 2022 Sep; 434(18):167631. PubMed ID: 35595164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Engineering and screening of artificial riboswitch as a novel gene control element].
    Yang H; Diao Y; Lin J; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):134-43. PubMed ID: 22667116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the modular nature of riboswitches and RNA thermometers.
    Roßmanith J; Narberhaus F
    Nucleic Acids Res; 2016 Jun; 44(11):5410-23. PubMed ID: 27060146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting.
    Page K; Shaffer J; Lin S; Zhang M; Liu JM
    ACS Synth Biol; 2018 Sep; 7(9):2000-2006. PubMed ID: 30119599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.
    Goler JA; Carothers JM; Keasling JD
    Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic Applications of Aptamer-Based Riboswitches.
    Lee CH; Han SR; Lee SW
    Nucleic Acid Ther; 2016 Feb; 26(1):44-51. PubMed ID: 26539634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring Riboswitches to Create New Genetic Circuits in Bacteria.
    Robinson CJ; Medina-Stacey D; Wu MC; Vincent HA; Micklefield J
    Methods Enzymol; 2016; 575():319-48. PubMed ID: 27417935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.