These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Physiological Competition of Brain Phenylalanine Accretion: Initial Pharmacokinetic Analyses of Aminoisobutyric and Methylaminoisobutyric Acids in Vogel KR; Ainslie GR; Phillips B; Arning E; Bottiglieri T; Shen DD; Gibson KM Mol Genet Metab Rep; 2015 Jun; 3():80-87. PubMed ID: 26120559 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. van Vliet D; Bruinenberg VM; Mazzola PN; van Faassen MH; de Blaauw P; Pascucci T; Puglisi-Allegra S; Kema IP; Heiner-Fokkema MR; van der Zee EA; van Spronsen FJ Am J Clin Nutr; 2016 Nov; 104(5):1292-1300. PubMed ID: 27655443 [TBL] [Abstract][Full Text] [Related]
5. Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Dobrowolski SF; Phua YL; Vockley J; Goetzman E; Blair HC Mol Genet Metab; 2022 Jun; 136(2):111-117. PubMed ID: 35379539 [TBL] [Abstract][Full Text] [Related]
6. Future role of large neutral amino acids in transport of phenylalanine into the brain. Matalon R; Surendran S; Matalon KM; Tyring S; Quast M; Jinga W; Ezell E; Szucs S Pediatrics; 2003 Dec; 112(6 Pt 2):1570-4. PubMed ID: 14654667 [TBL] [Abstract][Full Text] [Related]
7. Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria. Ney DM; Hull AK; van Calcar SC; Liu X; Etzel MR J Nutr; 2008 Feb; 138(2):316-22. PubMed ID: 18203898 [TBL] [Abstract][Full Text] [Related]
8. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria. Dobrowolski SF; Lyons-Weiler J; Spridik K; Vockley J; Skvorak K; Biery A Mol Genet Metab; 2016 Sep; 119(1-2):1-7. PubMed ID: 26822703 [TBL] [Abstract][Full Text] [Related]
9. New findings about neuropathological outcomes in the PKU mouse throughout lifespan. Bregalda A; Carducci C; Pascucci T; Ambrogini P; Sartini S; Pierigè F; di Carlo E; Fiori E; Ielpo D; Pagliarini M; Leuzzi V; Magnani M; Rossi L Mol Genet Metab; 2024; 143(1-2):108543. PubMed ID: 39047302 [TBL] [Abstract][Full Text] [Related]
10. Correlations of blood and brain biochemistry in phenylketonuria: Results from the Pah-enu2 PKU mouse. Dijkstra AM; van Vliet N; van Vliet D; Romani C; Huijbregts SCJ; van der Goot E; Hovens IB; van der Zee EA; Kema IP; Heiner-Fokkema MR; van Spronsen FJ Mol Genet Metab; 2021 Nov; 134(3):250-256. PubMed ID: 34656426 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabolomics in the Pah Dobrowolski SF; Phua YL; Sudano C; Spridik K; Zinn PO; Wang Y; Bharathi S; Vockley J; Goetzman E Mol Genet Metab; 2022 May; 136(1):38-45. PubMed ID: 35367142 [TBL] [Abstract][Full Text] [Related]
12. Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Burlina AP; Cazzorla C; Massa P; Polo G; Loro C; Gueraldi D; Burlina AB Nutrients; 2019 Oct; 11(10):. PubMed ID: 31640267 [TBL] [Abstract][Full Text] [Related]
13. The effect of casein glycomacropeptide versus free synthetic amino acids for early treatment of phenylketonuria in a mice model. Ahring KK; Dagnæs-Hansen F; Brüel A; Christensen M; Jensen E; Jensen TG; Johannsen M; Johansen KS; Lund AM; Madsen JG; Brøndum-Nielsen K; Pedersen M; Sørensen LK; Kjolby M; Møller LB PLoS One; 2022; 17(1):e0261150. PubMed ID: 35015767 [TBL] [Abstract][Full Text] [Related]
14. The increasing importance of LNAA supplementation in phenylketonuria at higher plasma phenylalanine concentrations. van Vliet D; van der Goot E; van Ginkel WG; van Faassen HJR; de Blaauw P; Kema IP; Heiner-Fokkema MR; van der Zee EA; van Spronsen FJ Mol Genet Metab; 2022 Jan; 135(1):27-34. PubMed ID: 34974973 [TBL] [Abstract][Full Text] [Related]
15. The Benefit of Large Neutral Amino Acid Supplementation to a Liberalized Phenylalanine-Restricted Diet in Adult Phenylketonuria Patients: Evidence from Adult van Vliet D; van der Goot E; van Ginkel WG; van Faassen MHJR; de Blaauw P; Kema IP; Martinez A; Heiner-Fokkema MR; van der Zee EA; van Spronsen FJ Nutrients; 2019 Sep; 11(9):. PubMed ID: 31546852 [TBL] [Abstract][Full Text] [Related]
16. Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice. van Vliet D; Bruinenberg VM; Mazzola PN; van Faassen MH; de Blaauw P; Kema IP; Heiner-Fokkema MR; van Anholt RD; van der Zee EA; van Spronsen FJ PLoS One; 2015; 10(12):e0143833. PubMed ID: 26624009 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Sawin EA; Murali SG; Ney DM Mol Genet Metab; 2014 Apr; 111(4):452-61. PubMed ID: 24560888 [TBL] [Abstract][Full Text] [Related]
18. Functional activity of a large neutral amino acid transporter (LAT) in rabbit retina: a study involving the in vivo retinal uptake and vitreal pharmacokinetics of L-phenyl alanine. Atluri H; Talluri RS; Mitra AK Int J Pharm; 2008 Jan; 347(1-2):23-30. PubMed ID: 17686592 [TBL] [Abstract][Full Text] [Related]