These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23999176)

  • 21. Likeness-based detection of sleep slow oscillations in normal and altered sleep conditions: application on low-density EEG recordings.
    Piarulli A; Menicucci D; Gemignani A; Olcese U; d'Ascanio P; Pingitore A; Bedini R; Landi A
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):363-72. PubMed ID: 19770081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sleep spindle characteristics in adolescents.
    Goldstone A; Willoughby AR; de Zambotti M; Clark DB; Sullivan EV; Hasler BP; Franzen PL; Prouty DE; Colrain IM; Baker FC
    Clin Neurophysiol; 2019 Jun; 130(6):893-902. PubMed ID: 30981174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the properties of EEG spindles in sleep and propofol anesthesia.
    Ferenets R; Lipping T; Suominen P; Turunen J; Puumala P; Jäntti V; Himanen SL; Huotari AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6356-9. PubMed ID: 17945960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep Spindle Detection Using RUSBoost and Synchrosqueezed Wavelet Transform.
    Kinoshita T; Fujiwara K; Kano M; Ogawa K; Sumi Y; Matsuo M; Kadotani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):390-398. PubMed ID: 31944960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchronization and Propagation of Global Sleep Spindles.
    Souza RT; Gerhardt GJ; Schönwald SV; Rybarczyk-Filho JL; Lemke N
    PLoS One; 2016; 11(3):e0151369. PubMed ID: 26963102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nap sleep spindle correlates of intelligence.
    Ujma PP; Bódizs R; Gombos F; Stintzing J; Konrad BN; Genzel L; Steiger A; Dresler M
    Sci Rep; 2015 Nov; 5():17159. PubMed ID: 26607963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects.
    Wendt SL; Christensen JA; Kempfner J; Leonthin HL; Jennum P; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4250-3. PubMed ID: 23366866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Oscillating Sounds to Manipulate Sleep Spindles.
    Antony JW; Paller KA
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers?
    Ktonas PY; Golemati S; Xanthopoulos P; Sakkalis V; Ortigueira MD; Tsekou H; Zervakis M; Paparrigopoulos T; Bonakis A; Economou NT; Theodoropoulos P; Papageorgiou SG; Vassilopoulos D; Soldatos CR
    J Neurosci Methods; 2009 Dec; 185(1):133-42. PubMed ID: 19747507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential dementia biomarkers based on the time-varying microstructure of sleep EEG spindles.
    Ktonas PY; Golemati S; Xanthopoulos P; Sakkalis V; Ortigueira MD; Tsekou H; Zervakis M; Paparrigopoulos T; Soldatos CR
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2464-7. PubMed ID: 18002493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated sleep-spindle detection in healthy children polysomnograms.
    Causa L; Held CM; Causa J; Estévez PA; Perez CA; Chamorro R; Garrido M; Algarín C; Peirano P
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2135-46. PubMed ID: 20550978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unveil sleep spindles with concentration of frequency and time (ConceFT).
    Shimizu R; Wu HT
    Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095
    [No Abstract]   [Full Text] [Related]  

  • 36. A rule-based automatic sleep staging method.
    Liang SF; Kuo CE; Hu YH; Cheng YS
    J Neurosci Methods; 2012 Mar; 205(1):169-76. PubMed ID: 22245090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semi-automatic sleep EEG scoring based on the hypnospectrogram.
    Koupparis AM; Kokkinos V; Kostopoulos GK
    J Neurosci Methods; 2014 Jan; 221():189-95. PubMed ID: 24459717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-expert and intra-expert reliability in sleep spindle scoring.
    Wendt SL; Welinder P; Sorensen HB; Peppard PE; Jennum P; Perona P; Mignot E; Warby SC
    Clin Neurophysiol; 2015 Aug; 126(8):1548-56. PubMed ID: 25434753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
    Chambon S; Thorey V; Arnal PJ; Mignot E; Gramfort A
    J Neurosci Methods; 2019 Jun; 321():64-78. PubMed ID: 30946878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.