These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23999187)

  • 1. Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch.
    Hino T; Hasegawa T; Tanaka H; Tsuruoka T; Terabe K; Ogawa T; Aono M
    Nanotechnology; 2013 Sep; 24(38):384006. PubMed ID: 23999187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching kinetics of a Cu2S-based gap-type atomic switch.
    Nayak A; Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(23):235201. PubMed ID: 21483044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the formation process of metal atomic filament for metal sulfide atomic switches by electrical measurement.
    Koizumi R; Aiba A; Kaneko S; Fujii S; Nishino T; Kiguchi M
    Nanotechnology; 2019 Mar; 30(12):125202. PubMed ID: 30620940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch Based on Point-Contact Spectroscopy.
    Aiba A; Koizumi R; Tsuruoka T; Terabe K; Tsukagoshi K; Kaneko S; Fujii S; Nishino T; Kiguchi M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27178-27182. PubMed ID: 31276618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.
    Hasegawa T; Terabe K; Tsuruoka T; Aono M
    Adv Mater; 2012 Jan; 24(2):252-67. PubMed ID: 21989741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(25):254013. PubMed ID: 21572189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change.
    Ravindran S; Datta A; Alameh K; Lee YT
    Opt Express; 2012 Jul; 20(14):15610-27. PubMed ID: 22772255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvolatile memory properties of Pt nanoparticle-embedded TiO(2) nanocomposite multilayers via electrostatic layer-by-layer assembly.
    Lee C; Kim I; Shin H; Kim S; Cho J
    Nanotechnology; 2010 May; 21(18):185704. PubMed ID: 20378950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-low voltage and ultra-low power consumption nonvolatile operation of a three-terminal atomic switch.
    Wang Q; Itoh Y; Tsuruoka T; Aono M; Hasegawa T
    Adv Mater; 2015 Oct; 27(39):6029-33. PubMed ID: 26314544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable threshold resistive switching characteristics of Pt-Fe2O3 core-shell nanoparticle assembly by space charge effect.
    Baek YJ; Hu Q; Yoo JW; Choi YJ; Kang CJ; Lee HH; Min SH; Kim HM; Kim KB; Yoon TS
    Nanoscale; 2013 Jan; 5(2):772-9. PubMed ID: 23235888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.
    Gubicza A; Csontos M; Halbritter A; Mihály G
    Nanoscale; 2015 Mar; 7(10):4394-9. PubMed ID: 25684683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-switchable bistable twisted nematic liquid crystal optical switch.
    Wang CT; Wu YC; Lin TH
    Opt Express; 2013 Feb; 21(4):4361-6. PubMed ID: 23481969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance switch employing a simple metal nanogap junction.
    Naitoh Y; Horikawa M; Abe H; Shimizu T
    Nanotechnology; 2006 Nov; 17(22):5669-74. PubMed ID: 21727340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the metallic bridging dynamics in nanogap atomic switches.
    Ji X; Pang KY; Zhao R
    Nanoscale; 2019 Nov; 11(46):22446-22455. PubMed ID: 31746896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gate-controlled atomic quantum switch.
    Xie FQ; Nittler L; Obermair Ch; Schimmel T
    Phys Rev Lett; 2004 Sep; 93(12):128303. PubMed ID: 15447312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of bipolar resistive switching and the time-dependent SET process in silver sulfide/silver thin films and nanowire array structures.
    Pi C; Ren Y; Chim WK
    Nanotechnology; 2010 Feb; 21(8):85709. PubMed ID: 20097983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of different illumination profiles on the on-state resistances of silicon carbide photoconductive semiconductor switches.
    Wang L; Xun T; Yang H; Liu J; Zhang Y
    Rev Sci Instrum; 2014 Apr; 85(4):044703. PubMed ID: 24784634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The differential atomic response of the topmost graphene layer on graphite.
    Khara GS; Choi J
    J Phys Condens Matter; 2009 May; 21(19):195402. PubMed ID: 21825480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.