BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23999302)

  • 1. The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones.
    Li JK; Liao JH; Li H; Kuo CI; Huang KF; Yang LW; Wu SH; Chang CI
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1789-97. PubMed ID: 23999302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors.
    Liao JH; Ihara K; Kuo CI; Huang KF; Wakatsuki S; Wu SH; Chang CI
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1395-402. PubMed ID: 23897463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution.
    Botos I; Melnikov EE; Cherry S; Khalatova AG; Rasulova FS; Tropea JE; Maurizi MR; Rotanova TV; Gustchina A; Wlodawer A
    J Struct Biol; 2004; 146(1-2):113-22. PubMed ID: 15037242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae.
    Xie F; Li G; Zhang Y; Zhou L; Liu S; Liu S; Wang C
    Microb Pathog; 2016 Apr; 93():38-43. PubMed ID: 26796296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease.
    Lee AY; Chen YD; Chang YY; Lin YC; Chang CF; Huang SJ; Wu SH; Hsu CH
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):218-30. PubMed ID: 24531457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Novel view of the structure of the non-catalytic N-terminal region of ATP-dependent LonA proteases].
    Rotanova TV; Mel'nikov EE
    Biomed Khim; 2010; 56(3):413-20. PubMed ID: 20695221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Lon-like protease with no ATP-powered unfolding activity.
    Liao JH; Kuo CI; Huang YY; Lin YC; Lin YC; Yang CY; Wu WL; Chang WH; Liaw YC; Lin LH; Chang CI; Wu SH
    PLoS One; 2012; 7(7):e40226. PubMed ID: 22792246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of the α-helical domains in the functioning of ATP-dependent Lon protease of Escherichia coli].
    Andrianova AG; Kudzhaev AM; Serova OV; Dergousova NI; Rotanova TV
    Bioorg Khim; 2014; 40(6):673-81. PubMed ID: 25895363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Bacillus subtilis Lon protease.
    Duman RE; Löwe J
    J Mol Biol; 2010 Aug; 401(4):653-70. PubMed ID: 20600124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into substrate recognition and discrimination by the N-terminal domain of Lon AAA+ protease.
    Tzeng SR; Tseng YC; Lin CC; Hsu CY; Huang SJ; Kuo YT; Chang CI
    Elife; 2021 Apr; 10():. PubMed ID: 33929321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the N-terminal domain of E. coli Lon protease.
    Li M; Rasulova F; Melnikov EE; Rotanova TV; Gustchina A; Maurizi MR; Wlodawer A
    Protein Sci; 2005 Nov; 14(11):2895-900. PubMed ID: 16199667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains.
    Rotanova TV; Botos I; Melnikov EE; Rasulova F; Gustchina A; Maurizi MR; Wlodawer A
    Protein Sci; 2006 Aug; 15(8):1815-28. PubMed ID: 16877706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.
    Wohlever ML; Baker TA; Sauer RT
    Mol Microbiol; 2014 Jan; 91(1):66-78. PubMed ID: 24205897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The Effect of Mutations in the Inserted Domain of ATP-Dependent Lon Protease from E. coli on the Enzyme Function].
    Kudzhaev AM; Andrianova AG; Serova OV; Arkhipova VA; Dubovtseva ES; Rotanova TV
    Bioorg Khim; 2015; 41(5):579-86. PubMed ID: 26762095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Isolation and characterization of fragments of ATP-dependent protease Lon from Escherichia coli obtained by limited proteolysis].
    Vasil'eva OV; Martynova NIu; Potapenko NA; Ovchinnikova TV
    Bioorg Khim; 2004; 30(4):341-9. PubMed ID: 15469006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases.
    Botos I; Melnikov EE; Cherry S; Kozlov S; Makhovskaya OV; Tropea JE; Gustchina A; Rotanova TV; Wlodawer A
    J Mol Biol; 2005 Aug; 351(1):144-57. PubMed ID: 16002085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation.
    Walton TA; Sousa MC
    Mol Cell; 2004 Aug; 15(3):367-74. PubMed ID: 15304217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms.
    Wlodawer A; Sekula B; Gustchina A; Rotanova TV
    J Mol Biol; 2022 Apr; 434(7):167504. PubMed ID: 35183556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the N domain of Lon protease from Mycobacterium avium complex.
    Chen X; Zhang S; Bi F; Guo C; Feng L; Wang H; Yao H; Lin D
    Protein Sci; 2019 Sep; 28(9):1720-1726. PubMed ID: 31306520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.