BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23999604)

  • 1. Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism.
    Brandt W; Backenköhler A; Schulze E; Plock A; Herberg T; Roese E; Wittstock U
    Plant Mol Biol; 2014 Jan; 84(1-2):173-88. PubMed ID: 23999604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of specifier proteins in glucosinolate-containing plants.
    Kuchernig JC; Burow M; Wittstock U
    BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.
    Zhang W; Wang W; Liu Z; Xie Y; Wang H; Mu Y; Huang Y; Feng Y
    Biochem Biophys Res Commun; 2016 Sep; 478(2):746-51. PubMed ID: 27498030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tipping the scales--specifier proteins in glucosinolate hydrolysis.
    Wittstock U; Burow M
    IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
    Winde I; Wittstock U
    Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
    Burow M; Bergner A; Gershenzon J; Wittstock U
    Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown.
    Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U
    PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the nitrile-specifier protein NSP1 from Arabidopsis thaliana.
    Zhang W; Zhou Y; Wang K; Dong Y; Wang W; Feng Y
    Biochem Biophys Res Commun; 2017 Jun; 488(1):147-152. PubMed ID: 28479247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory.
    Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J
    Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.
    Gumz F; Krausze J; Eisenschmidt D; Backenköhler A; Barleben L; Brandt W; Wittstock U
    Plant Mol Biol; 2015 Sep; 89(1-2):67-81. PubMed ID: 26260516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.
    Kissen R; Bones AM
    J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation.
    Eisenschmidt-Bönn D; Schneegans N; Backenköhler A; Wittstock U; Brandt W
    Plant J; 2019 Jul; 99(2):329-343. PubMed ID: 30900313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myrosinase: gene family evolution and herbivore defense in Brassicaceae.
    Rask L; Andréasson E; Ekbom B; Eriksson S; Pontoppidan B; Meijer J
    Plant Mol Biol; 2000 Jan; 42(1):93-113. PubMed ID: 10688132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of
    Wittstock U; Meier K; Dörr F; Ravindran BM
    Front Plant Sci; 2016; 7():1821. PubMed ID: 27990154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions.
    Kong XY; Kissen R; Bones AM
    Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.
    Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U
    Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation.
    Wentzell AM; Kliebenstein DJ
    Plant Physiol; 2008 May; 147(1):415-28. PubMed ID: 18359845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.