These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 23999817)
1. A comparative study on plaque vulnerability using constitutive equations. Karimi A; Navidbakhsh M; Faghihi S Perfusion; 2014 Mar; 29(2):178-83. PubMed ID: 23999817 [TBL] [Abstract][Full Text] [Related]
2. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
3. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
4. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
5. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related]
6. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Karimi A; Navidbakhsh M; Yamada H; Razaghi R Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756 [TBL] [Abstract][Full Text] [Related]
7. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Cilla M; Peña E; Martínez MA Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796 [TBL] [Abstract][Full Text] [Related]
8. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques. Teng Z; Yuan J; Feng J; Zhang Y; Brown AJ; Wang S; Lu Q; Gillard JH J Biomech; 2015 Nov; 48(14):3912-21. PubMed ID: 26472305 [TBL] [Abstract][Full Text] [Related]
9. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
10. Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks. Hsiao HM; Wu YY; Tsai BC; Chen YC; Cheng YH Technol Health Care; 2015; 24 Suppl 1():S155-61. PubMed ID: 26684564 [TBL] [Abstract][Full Text] [Related]
11. Inelasticity of human carotid atherosclerotic plaque. Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ Ann Biomed Eng; 2011 Sep; 39(9):2445-55. PubMed ID: 21618044 [TBL] [Abstract][Full Text] [Related]
12. Machine learning techniques as a helpful tool toward determination of plaque vulnerability. Cilla M; Martínez J; Peña E; Martínez MÁ IEEE Trans Biomed Eng; 2012 Apr; 59(4):1155-61. PubMed ID: 22287230 [TBL] [Abstract][Full Text] [Related]
13. The influence of axial image resolution on atherosclerotic plaque stress computations. Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242 [TBL] [Abstract][Full Text] [Related]
14. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Shojaei A Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947 [TBL] [Abstract][Full Text] [Related]
15. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Shojaei A; Faghihi S Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2550-4. PubMed ID: 23623067 [TBL] [Abstract][Full Text] [Related]
16. Artery buckling affects the mechanical stress in atherosclerotic plaques. Sanyal A; Han HC Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S4. PubMed ID: 25603490 [TBL] [Abstract][Full Text] [Related]
17. Vulnerable atherosclerotic plaque - a review of current concepts and advanced imaging. Spacek M; Zemanek D; Hutyra M; Sluka M; Taborsky M Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2018 Mar; 162(1):10-17. PubMed ID: 29467545 [TBL] [Abstract][Full Text] [Related]
18. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/- mouse and human plaque components stiffnesses. Ohayon J; Mesnier N; Broisat A; Toczek J; Riou L; Tracqui P Biomech Model Mechanobiol; 2012 Jul; 11(6):801-13. PubMed ID: 21986797 [TBL] [Abstract][Full Text] [Related]
19. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Dolla WJ; House JA; Marso SP Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558 [TBL] [Abstract][Full Text] [Related]
20. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Syaifudin A; Ariatedja JB; Kaelani Y; Takeda R; Sasaki K Biomed Mater Eng; 2019; 30(3):309-322. PubMed ID: 31127751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]