These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 23999890)
21. A two-phase linear regression model for biologic half-life data. Lee ML; Poon WY; Kingdon HS J Lab Clin Med; 1990 Jun; 115(6):745-8. PubMed ID: 2114470 [TBL] [Abstract][Full Text] [Related]
22. Nonlinear mixed-effects modelling for single cell estimation: when, why, and how to use it. Karlsson M; Janzén DL; Durrieu L; Colman-Lerner A; Kjellsson MC; Cedersund G BMC Syst Biol; 2015 Sep; 9():52. PubMed ID: 26335227 [TBL] [Abstract][Full Text] [Related]
23. Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems. Chen L; Chai Y; Wu R Chaos; 2011 Dec; 21(4):043107. PubMed ID: 22225344 [TBL] [Abstract][Full Text] [Related]
25. A novel neural network for variational inequalities with linear and nonlinear constraints. Gao XB; Liao LZ; Qi L IEEE Trans Neural Netw; 2005 Nov; 16(6):1305-17. PubMed ID: 16342476 [TBL] [Abstract][Full Text] [Related]
26. Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution. Drikvandi R J Pharmacokinet Pharmacodyn; 2017 Jun; 44(3):223-232. PubMed ID: 28194555 [TBL] [Abstract][Full Text] [Related]
27. Artificial neural network for the joint modelling of discrete cause-specific hazards. Biganzoli EM; Boracchi P; Ambrogi F; Marubini E Artif Intell Med; 2006 Jun; 37(2):119-30. PubMed ID: 16730963 [TBL] [Abstract][Full Text] [Related]
28. Nonlinear identification with local model networks using GTLS techniques and equality constraints. Hametner C; Jakubek S IEEE Trans Neural Netw; 2011 Sep; 22(9):1406-18. PubMed ID: 21788188 [TBL] [Abstract][Full Text] [Related]
29. Partially linear censored quantile regression. Neocleous T; Portnoy S Lifetime Data Anal; 2009 Sep; 15(3):357-78. PubMed ID: 19418223 [TBL] [Abstract][Full Text] [Related]
30. Comparison of two design optimality criteria applied to a nonlinear model. Bogacka B; Wright F J Biopharm Stat; 2004 Nov; 14(4):909-30. PubMed ID: 15587972 [TBL] [Abstract][Full Text] [Related]
31. Nonlinear systems identification by combining regression with bootstrap resampling. Kuramae H; Hirata Y; Bruchovsky N; Aihara K; Suzuki H Chaos; 2011 Dec; 21(4):043121. PubMed ID: 22225358 [TBL] [Abstract][Full Text] [Related]
32. Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data. Lim C Stat Med; 2015 Mar; 34(7):1185-98. PubMed ID: 25490981 [TBL] [Abstract][Full Text] [Related]
33. Estimation of nonlinear errors-in-variables models for computer vision applications. Matei BC; Meer P IEEE Trans Pattern Anal Mach Intell; 2006 Oct; 28(10):1537-52. PubMed ID: 16986538 [TBL] [Abstract][Full Text] [Related]
34. Modeling continuous covariates with a "spike" at zero: Bivariate approaches. Jenkner C; Lorenz E; Becher H; Sauerbrei W Biom J; 2016 Jul; 58(4):783-96. PubMed ID: 27072783 [TBL] [Abstract][Full Text] [Related]
35. Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. Overgaard RV; Jonsson N; Tornøe CW; Madsen H J Pharmacokinet Pharmacodyn; 2005 Feb; 32(1):85-107. PubMed ID: 16175312 [TBL] [Abstract][Full Text] [Related]
36. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Collins GS; Ogundimu EO; Cook JA; Manach YL; Altman DG Stat Med; 2016 Oct; 35(23):4124-35. PubMed ID: 27193918 [TBL] [Abstract][Full Text] [Related]
37. Boosting in Nonlinear Regression Models with an Application to DCE-MRI Data. Feilke M; Bischl B; Schmid VJ; Gertheiss J Methods Inf Med; 2016; 55(1):31-41. PubMed ID: 26577400 [TBL] [Abstract][Full Text] [Related]
38. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration. Xia Y; Sun C; Zheng WX IEEE Trans Neural Netw Learn Syst; 2012 May; 23(5):812-20. PubMed ID: 24806129 [TBL] [Abstract][Full Text] [Related]
39. Relationship between pharmacokinetic half-life and pharmacodynamic half-life in effect-time modeling. Keller F; Czock D; Zellner D; Giehl M Int J Clin Pharmacol Ther; 1998 Mar; 36(3):168-75. PubMed ID: 9562234 [TBL] [Abstract][Full Text] [Related]
40. An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. Ahmad J; Mohyud-Din ST PLoS One; 2014; 9(12):e109127. PubMed ID: 25525804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]