These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23999965)

  • 1. Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads.
    Barnes WJ; Baum M; Peisker H; Gorb SN
    J Morphol; 2013 Dec; 274(12):1384-96. PubMed ID: 23999965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White.
    Scholz I; Barnes WJ; Smith JM; Baumgartner W
    J Exp Biol; 2009 Jan; 212(Pt 2):155-62. PubMed ID: 19112133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light and electron microscopic analyses of the high deformability of adhesive toe pads in White's tree frog, Litoria caerulea.
    Nakano M; Saino T
    J Morphol; 2016 Nov; 277(11):1509-1516. PubMed ID: 27553505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions.
    Meng F; Liu Q; Wang X; Tan D; Xue L; Barnes WJP
    Philos Trans A Math Phys Eng Sci; 2019 Jul; 377(2150):20190131. PubMed ID: 31177956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale friction and adhesion of tree frog toe pads.
    Kappl M; Kaveh F; Barnes WJ
    Bioinspir Biomim; 2016 May; 11(3):035003. PubMed ID: 27165465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs.
    Smith JM; Barnes WJ; Downie JR; Ruxton GD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Nov; 192(11):1193-204. PubMed ID: 16960739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet but not slippery: Boundary friction in tree frog adhesive toe pads.
    Federle W; Barnes WJ; Baumgartner W; Drechsler P; Smith JM
    J R Soc Interface; 2006 Oct; 3(10):689-97. PubMed ID: 16971337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives.
    Drotlef DM; Appel E; Peisker H; Dening K; Del Campo A; Gorb SN; Barnes WJ
    Interface Focus; 2015 Feb; 5(1):20140036. PubMed ID: 25657830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic modulus of tree frog adhesive toe pads.
    Barnes WJ; Goodwyn PJ; Nokhbatolfoghahai M; Gorb SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Oct; 197(10):969-78. PubMed ID: 21667266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokeratin localization in toe pads of the anuran amphibian Philautus annandalii (Boulenger, 1906).
    Chakraborti S; Nag TC; Das D; Sanyal Chatterjee T; De SK
    Tissue Cell; 2014 Jun; 46(3):165-9. PubMed ID: 24698093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming.
    Crawford N; Endlein T; Barnes WJ
    J Exp Biol; 2012 Nov; 215(Pt 22):3965-72. PubMed ID: 23100487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The digital pads of rhacophorid tree-frogs.
    Mizuhira V
    J Electron Microsc (Tokyo); 2004; 53(1):63-78. PubMed ID: 15077901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the maximum attachment performance of tree frogs on rough substrates.
    Langowski JKA; Rummenie A; Pieters RPM; Kovalev A; Gorb SN; van Leeuwen JL
    Bioinspir Biomim; 2019 Feb; 14(2):025001. PubMed ID: 30706849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics.
    Li M; Shi L; Wang X
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111531. PubMed ID: 33383551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale.
    Barnes WJ; Oines C; Smith JM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Nov; 192(11):1179-91. PubMed ID: 16924504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of clamping grips and friction pads by tree frogs for climbing curved surfaces.
    Endlein T; Ji A; Yuan S; Hill I; Wang H; Barnes WJ; Dai Z; Sitti M
    Proc Biol Sci; 2017 Feb; 284(1849):. PubMed ID: 28228509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, Staurois guttatus.
    Endlein T; Barnes WJ; Samuel DS; Crawford NA; Biaw AB; Grafe U
    PLoS One; 2013; 8(9):e73810. PubMed ID: 24086297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When the going gets rough - studying the effect of surface roughness on the adhesive abilities of tree frogs.
    Crawford N; Endlein T; Pham JT; Riehle M; Barnes WJ
    Beilstein J Nanotechnol; 2016; 7():2116-2131. PubMed ID: 28144558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mucus secretion in ventral surfaces of toe pads of the tree frog (Dryophytes japonica).
    Seol JU; Park JS; Lim JH; Hwang HS; Kim EB; Kim SG; Park JI; Sung HC; Kim JH; Kim ES
    Integr Zool; 2024 Mar; ():. PubMed ID: 38556643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tree Frog-Inspired Micropillar Arrays with Nanopits on the Surface for Enhanced Adhesion under Wet Conditions.
    Liu Q; Meng F; Wang X; Yang B; Tan D; Li Q; Shi Z; Shi K; Chen W; Liu S; Lei Y; Xue L
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19116-19122. PubMed ID: 32216267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.