BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23999983)

  • 1. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries.
    Wang M; Wang W; Wang A; Yuan K; Miao L; Zhang X; Huang Y; Yu Z; Qiu J
    Chem Commun (Camb); 2013 Nov; 49(87):10263-5. PubMed ID: 23999983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries.
    Wang J; Yue K; Zhu X; Wang KL; Duan L
    Phys Chem Chem Phys; 2016 Jan; 18(1):261-6. PubMed ID: 26608624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries.
    Zhang FF; Huang G; Wang XX; Qin YL; Du XC; Yin DM; Liang F; Wang LM
    Chemistry; 2014 Dec; 20(52):17523-9. PubMed ID: 25346404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries.
    Wang D; Yu Y; Zhou W; Chen H; DiSalvo FJ; Muller DA; Abruña HD
    Phys Chem Chem Phys; 2013 Jun; 15(23):9051-7. PubMed ID: 23661229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries.
    Li Z; Jiang Y; Yuan L; Yi Z; Wu C; Liu Y; Strasser P; Huang Y
    ACS Nano; 2014 Sep; 8(9):9295-303. PubMed ID: 25144303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries.
    Zhao Q; Hu Y; Zhang K; Chen J
    Inorg Chem; 2014 Sep; 53(17):9000-5. PubMed ID: 25119141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries.
    Xu GL; Xu YF; Fang JC; Peng XX; Fu F; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10782-93. PubMed ID: 24090340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications.
    Xu G; Ding B; Nie P; Shen L; Wang J; Zhang X
    Chemistry; 2013 Sep; 19(37):12306-12. PubMed ID: 23881725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.
    Li Z; Yuan L; Yi Z; Liu Y; Xin Y; Zhang Z; Huang Y
    Nanoscale; 2014; 6(3):1653-60. PubMed ID: 24336973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode.
    Zeng L; Pan F; Li W; Jiang Y; Zhong X; Yu Y
    Nanoscale; 2014 Aug; 6(16):9579-87. PubMed ID: 25008943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres.
    Xu H; Deng Y; Zhao Z; Xu H; Qin X; Chen G
    Chem Commun (Camb); 2014 Sep; 50(72):10468-70. PubMed ID: 25068553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sepiolite/CNT/S@PANI composite with stable network structure for high performance lithium sulfur batteries.
    Yuan G; Pan J; Zhang Y; Yu J; He Y; Su Y; Zhou Q; Jin H; Xie S
    RSC Adv; 2018 May; 8(32):17950-17957. PubMed ID: 35542059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries.
    Chelladurai K; Venkatachalam P; Rengapillai S; Liu WR; Huang CH; Marimuthu S
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FeOOH Nanocubes Anchored on Carbon Ribbons for Use in Li/O
    Lin Z; Zhang H; Liang G; Jin Y; Zeng H; Li J; Chen J; Zhang W; Xie F; Jin Y; Meng H
    Chemistry; 2019 Feb; 25(12):3112-3118. PubMed ID: 30618062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.
    Lin Z; Liu Z; Dudney NJ; Liang C
    ACS Nano; 2013 Mar; 7(3):2829-33. PubMed ID: 23427822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D structure through planting core-shell Si@TiN into an amorphous carbon slag: improved capacity of lithium-ion anodes.
    Tu J; Zhao Z; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Jul; 15(25):10472-6. PubMed ID: 23685911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.