These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 23999985)
1. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Cai J; Ma H; Zhang J; Song Q; Du Z; Huang Y; Xu J Chemistry; 2013 Oct; 19(42):14215-23. PubMed ID: 23999985 [TBL] [Abstract][Full Text] [Related]
2. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. Villa A; Schiavoni M; Campisi S; Veith GM; Prati L ChemSusChem; 2013 Apr; 6(4):609-12. PubMed ID: 23495091 [TBL] [Abstract][Full Text] [Related]
3. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. Gorbanev YY; Klitgaard SK; Woodley JM; Christensen CH; Riisager A ChemSusChem; 2009 Jul; 2(7):672-5. PubMed ID: 19593753 [TBL] [Abstract][Full Text] [Related]
4. Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. El Fergani M; Candu N; Tudorache M; Granger P; Parvulescu VI; Coman SM Molecules; 2020 Oct; 25(21):. PubMed ID: 33105761 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO Hayashi E; Komanoya T; Kamata K; Hara M ChemSusChem; 2017 Feb; 10(4):654-658. PubMed ID: 27925403 [TBL] [Abstract][Full Text] [Related]
6. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO Wei Y; Zhang Y; Chen Y; Wang F; Cao Y; Guan W; Li X ChemSusChem; 2022 Jul; 15(13):e202101983. PubMed ID: 34644006 [TBL] [Abstract][Full Text] [Related]
7. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. Yi G; Teong SP; Li X; Zhang Y ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713 [TBL] [Abstract][Full Text] [Related]
8. Effect of MnO Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429 [TBL] [Abstract][Full Text] [Related]
9. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst. Wang KF; Liu CL; Sui KY; Guo C; Liu CZ Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175 [TBL] [Abstract][Full Text] [Related]
10. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2 - and ZrO2 -based supports. Ait Rass H; Essayem N; Besson M ChemSusChem; 2015 Apr; 8(7):1206-17. PubMed ID: 25736596 [TBL] [Abstract][Full Text] [Related]
11. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. Casanova O; Iborra S; Corma A ChemSusChem; 2009; 2(12):1138-44. PubMed ID: 19760702 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Dijkman WP; Groothuis DE; Fraaije MW Angew Chem Int Ed Engl; 2014 Jun; 53(25):6515-8. PubMed ID: 24802551 [TBL] [Abstract][Full Text] [Related]
13. One-Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5-Hydroxymethylfurfural by H Jia HY; Zong MH; Zheng GW; Li N ChemSusChem; 2019 Nov; 12(21):4764-4768. PubMed ID: 31490638 [TBL] [Abstract][Full Text] [Related]
14. Challenges of Green Production of 2,5-Furandicarboxylic Acid from Bio-Derived 5-Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. Neukum D; Baumgarten L; Wüst D; Sarma BB; Saraçi E; Kruse A; Grunwaldt JD ChemSusChem; 2022 Jul; 15(13):e202200418. PubMed ID: 35439346 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Pal P; Saravanamurugan S ChemSusChem; 2022 Sep; 15(17):e202200902. PubMed ID: 35713635 [TBL] [Abstract][Full Text] [Related]
16. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase. Viña-Gonzalez J; Martinez AT; Guallar V; Alcalde M Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140293. PubMed ID: 31676448 [TBL] [Abstract][Full Text] [Related]
17. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. Artz J; Mallmann S; Palkovits R ChemSusChem; 2015 Feb; 8(4):672-9. PubMed ID: 25586312 [TBL] [Abstract][Full Text] [Related]
18. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural. Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14. Sheng Y; Tan X; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319 [TBL] [Abstract][Full Text] [Related]
20. Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles. Ohyama J; Kanao R; Esaki A; Satsuma A Chem Commun (Camb); 2014 May; 50(42):5633-6. PubMed ID: 24733311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]