These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23999996)
21. Lamina-dependent calibrated BOLD response in human primary motor cortex. Guidi M; Huber L; Lampe L; Gauthier CJ; Möller HE Neuroimage; 2016 Nov; 141():250-261. PubMed ID: 27364473 [TBL] [Abstract][Full Text] [Related]
22. Sparse linear regression for reconstructing muscle activity from human cortical fMRI. Ganesh G; Burdet E; Haruno M; Kawato M Neuroimage; 2008 Oct; 42(4):1463-72. PubMed ID: 18634889 [TBL] [Abstract][Full Text] [Related]
23. Brain source imaging based on movement-related cortical potentials induced by fatigue during self-paced handgrip contractions. Guo F; Zhang T; Hanson NJ; Zhang R Neuroreport; 2020 Mar; 31(4):300-304. PubMed ID: 31895748 [TBL] [Abstract][Full Text] [Related]
24. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Cogiamanian F; Marceglia S; Ardolino G; Barbieri S; Priori A Eur J Neurosci; 2007 Jul; 26(1):242-9. PubMed ID: 17614951 [TBL] [Abstract][Full Text] [Related]
25. Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Zijdewind I; Zwarts MJ; Kernell D Exp Brain Res; 2000 Feb; 130(4):529-32. PubMed ID: 10717794 [TBL] [Abstract][Full Text] [Related]
26. Post-exercise depression in corticomotor excitability after dynamic movement: a general property of fatiguing and non-fatiguing exercise. Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW Exp Brain Res; 2012 Jan; 216(1):41-9. PubMed ID: 22038716 [TBL] [Abstract][Full Text] [Related]
27. Cortical and segmental excitability during fatiguing contractions of the soleus muscle in humans. Iguchi M; Shields RK Clin Neurophysiol; 2012 Feb; 123(2):335-43. PubMed ID: 21802985 [TBL] [Abstract][Full Text] [Related]
28. Functional bold MRI: advantages of the 3 T vs. the 1.5 T. García-Eulate R; García-García D; Dominguez PD; Noguera JJ; De Luis E; Rodriguez-Oroz MC; Zubieta JL Clin Imaging; 2011; 35(3):236-41. PubMed ID: 21513865 [TBL] [Abstract][Full Text] [Related]
29. Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI. Bazargani N; Nosratinia A Med Image Anal; 2014 Jul; 18(5):711-24. PubMed ID: 24835179 [TBL] [Abstract][Full Text] [Related]
30. BOLD correlations to force in precision grip: an event-related study. Sulzer JS; Chib VS; Hepp-Reymond MC; Kollias S; Gassert R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2342-6. PubMed ID: 22254811 [TBL] [Abstract][Full Text] [Related]
31. Quantitative analysis of asymmetrical cortical activity in motor areas during sequential finger movement. Zeng L; Chen H; Ouyang L; Yao D; Gao JH Magn Reson Imaging; 2007 Dec; 25(10):1370-5. PubMed ID: 17482410 [TBL] [Abstract][Full Text] [Related]
32. Determining central activation failure and peripheral fatigue in the course of sustained maximal voluntary contractions: a model-based approach. Schillings ML; Stegeman DF; Zwarts MJ J Appl Physiol (1985); 2005 Jun; 98(6):2292-7. PubMed ID: 15705721 [TBL] [Abstract][Full Text] [Related]
33. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. McNeil CJ; Martin PG; Gandevia SC; Taylor JL J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743 [TBL] [Abstract][Full Text] [Related]
34. Dexterity is not affected by fatigue-induced depression of human motor cortex excitability. Lazarski JP; Ridding MC; Miles TS Neurosci Lett; 2002 Mar; 321(1-2):69-72. PubMed ID: 11872259 [TBL] [Abstract][Full Text] [Related]
35. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. Berman BD; Horovitz SG; Venkataraman G; Hallett M Neuroimage; 2012 Jan; 59(2):917-25. PubMed ID: 21803163 [TBL] [Abstract][Full Text] [Related]
36. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability. Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993 [TBL] [Abstract][Full Text] [Related]
37. Fatigue induced by intermittent maximal voluntary contractions is associated with significant losses in muscle output but limited reductions in functional MRI-measured brain activation level. Liu JZ; Zhang L; Yao B; Sahgal V; Yue GH Brain Res; 2005 Apr; 1040(1-2):44-54. PubMed ID: 15804425 [TBL] [Abstract][Full Text] [Related]
38. Nonlinear cortical modulation of muscle fatigue: a functional MRI study. Liu JZ; Dai TH; Sahgal V; Brown RW; Yue GH Brain Res; 2002 Dec; 957(2):320-9. PubMed ID: 12445974 [TBL] [Abstract][Full Text] [Related]
39. Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. Liu JZ; Shan ZY; Zhang LD; Sahgal V; Brown RW; Yue GH J Neurophysiol; 2003 Jul; 90(1):300-12. PubMed ID: 12634278 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. Joa KL; Han YH; Mun CW; Son BK; Lee CH; Shin YB; Ko HY; Shin YI J Neuroeng Rehabil; 2012 Jul; 9():48. PubMed ID: 22828165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]