These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24000196)

  • 1. Chemoselective oxidative C(CO)-C(methyl) bond cleavage of methyl ketones to aldehydes catalyzed by CuI with molecular oxygen.
    Zhang L; Bi X; Guan X; Li X; Liu Q; Barry BD; Liao P
    Angew Chem Int Ed Engl; 2013 Oct; 52(43):11303-7. PubMed ID: 24000196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-catalyzed aerobic oxidative cleavage of the C-C σ-bond using air as the oxidant: chemoselective synthesis of carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds.
    Xing Q; Lv H; Xia C; Li F
    Chem Commun (Camb); 2016 Jan; 52(3):489-92. PubMed ID: 26529597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal- and O
    Hu G; Ramakumar K; Brenner-Moyer SE
    J Org Chem; 2017 Jul; 82(13):6972-6977. PubMed ID: 28589722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper catalyzed oxygen assisted C(CNOH)-C(alkyl) bond cleavage: a facile conversion of aryl/aralkyl/vinyl ketones to aromatic acids.
    Sathyanarayana P; Ravi O; Muktapuram PR; Bathula SR
    Org Biomol Chem; 2015 Oct; 13(37):9681-5. PubMed ID: 26265089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-catalyzed direct oxidation of alkenes with molecular oxygen: general and practical methods for the preparation of 1,2-diols, aldehydes, and ketones.
    Wang A; Jiang H
    J Org Chem; 2010 Apr; 75(7):2321-6. PubMed ID: 20205415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides.
    Li T; Hammond GB; Xu B
    Chemistry; 2021 Jul; 27(38):9737-9741. PubMed ID: 34010489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic carbon-carbon bond cleavage of alkenes to aldehydes catalyzed by first-row transition-metal-substituted polyoxometalates in the presence of nitrogen dioxide.
    Rubinstein A; Jiménez-Lozanao P; Carbó JJ; Poblet JM; Neumann R
    J Am Chem Soc; 2014 Aug; 136(31):10941-8. PubMed ID: 25020036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile access to chiral ketones through metal-free oxidative C-C bond cleavage of aldehydes by O2.
    Tiwari B; Zhang J; Chi YR
    Angew Chem Int Ed Engl; 2012 Feb; 51(8):1911-4. PubMed ID: 22253214
    [No Abstract]   [Full Text] [Related]  

  • 9. Aldehydes and ketones formation: copper-catalyzed aerobic oxidative decarboxylation of phenylacetic acids and α-hydroxyphenylacetic acids.
    Feng Q; Song Q
    J Org Chem; 2014 Feb; 79(4):1867-71. PubMed ID: 24490660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline).
    Kogan V; Quintal MM; Neumann R
    Org Lett; 2005 Oct; 7(22):5039-42. PubMed ID: 16235952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective thioacetalisation and transthioacetalisation of carbonyl compounds catalysed by tetrabutylammonium tribromide (TBATB).
    Naik S; Gopinath R; Goswami M; Patel BK
    Org Biomol Chem; 2004 Jun; 2(11):1670-7. PubMed ID: 15162221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-catalyzed aerobic oxidative C-C bond cleavage of unstrained ketones with air and amines.
    Zhou W; Fan W; Jiang Q; Liang YF; Jiao N
    Org Lett; 2015 May; 17(10):2542-5. PubMed ID: 25951433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones via rhodium-catalyzed asymmetric hydrogenation: mechanistic insight into the role of Brønsted acid additives.
    Komanduri V; Krische MJ
    J Am Chem Soc; 2006 Dec; 128(51):16448-9. PubMed ID: 17177363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A RuH(2)(CO)(PPh(3))(3)-catalyzed regioselective arylation of aromatic ketones with arylboronates via carbon-hydrogen bond cleavage.
    Kakiuchi F; Matsuura Y; Kan S; Chatani N
    J Am Chem Soc; 2005 Apr; 127(16):5936-45. PubMed ID: 15839693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.
    Zhou S; Wu Z; Rong J; Wang S; Yang G; Zhu X; Zhang L
    Chemistry; 2012 Feb; 18(9):2653-9. PubMed ID: 22259029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-metal-catalyzed chemoselective methylenation of dicarbonyl substrates.
    Lebel H; Davi M; Stokłosa GT
    J Org Chem; 2008 Sep; 73(17):6828-30. PubMed ID: 18661948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem Aldol Condensation - Platinacycle-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids.
    Liao YX; Hu QS
    European J Org Chem; 2012 Oct; 2012(30):5897-5901. PubMed ID: 23335856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of levulinate into succinate through catalytic oxidative carbon-carbon bond cleavage with dioxygen.
    Liu J; Du Z; Lu T; Xu J
    ChemSusChem; 2013 Dec; 6(12):2255-8. PubMed ID: 23922234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoselective Nucleophilic Functionalizations of Aromatic Aldehydes and Acetals via Pyridinium Salt Intermediates.
    Kawajiri T; Kato M; Nakata H; Goto R; Aibara SY; Ohta R; Fujioka H; Sajiki H; Sawama Y
    J Org Chem; 2019 Apr; 84(7):3853-3870. PubMed ID: 30747527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.
    Zhang C; Feng P; Jiao N
    J Am Chem Soc; 2013 Oct; 135(40):15257-62. PubMed ID: 24032593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.